| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elimnv | Structured version Visualization version GIF version | ||
| Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| elimnv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| elimnv.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| elimnv.9 | ⊢ 𝑈 ∈ NrmCVec |
| Ref | Expression |
|---|---|
| elimnv | ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elimnv.9 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
| 2 | elimnv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 3 | elimnv.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
| 4 | 2, 3 | nvzcl 30614 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ 𝑍 ∈ 𝑋 |
| 6 | 5 | elimel 4542 | 1 ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ifcif 4472 ‘cfv 6481 NrmCVeccnv 30564 BaseSetcba 30566 0veccn0v 30568 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-1st 7921 df-2nd 7922 df-grpo 30473 df-gid 30474 df-ablo 30525 df-vc 30539 df-nv 30572 df-va 30575 df-ba 30576 df-sm 30577 df-0v 30578 df-nmcv 30580 |
| This theorem is referenced by: elimph 30800 |
| Copyright terms: Public domain | W3C validator |