MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elimnv Structured version   Visualization version   GIF version

Theorem elimnv 28231
Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
elimnv.1 𝑋 = (BaseSet‘𝑈)
elimnv.5 𝑍 = (0vec𝑈)
elimnv.9 𝑈 ∈ NrmCVec
Assertion
Ref Expression
elimnv if(𝐴𝑋, 𝐴, 𝑍) ∈ 𝑋

Proof of Theorem elimnv
StepHypRef Expression
1 elimnv.9 . . 3 𝑈 ∈ NrmCVec
2 elimnv.1 . . . 4 𝑋 = (BaseSet‘𝑈)
3 elimnv.5 . . . 4 𝑍 = (0vec𝑈)
42, 3nvzcl 28182 . . 3 (𝑈 ∈ NrmCVec → 𝑍𝑋)
51, 4ax-mp 5 . 2 𝑍𝑋
65elimel 4411 1 if(𝐴𝑋, 𝐴, 𝑍) ∈ 𝑋
Colors of variables: wff setvar class
Syntax hints:   = wceq 1507  wcel 2050  ifcif 4344  cfv 6182  NrmCVeccnv 28132  BaseSetcba 28134  0veccn0v 28136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2744  ax-rep 5043  ax-sep 5054  ax-nul 5061  ax-pow 5113  ax-pr 5180  ax-un 7273
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2753  df-cleq 2765  df-clel 2840  df-nfc 2912  df-ne 2962  df-ral 3087  df-rex 3088  df-reu 3089  df-rab 3091  df-v 3411  df-sbc 3676  df-csb 3781  df-dif 3826  df-un 3828  df-in 3830  df-ss 3837  df-nul 4173  df-if 4345  df-sn 4436  df-pr 4438  df-op 4442  df-uni 4707  df-iun 4788  df-br 4924  df-opab 4986  df-mpt 5003  df-id 5306  df-xp 5407  df-rel 5408  df-cnv 5409  df-co 5410  df-dm 5411  df-rn 5412  df-res 5413  df-ima 5414  df-iota 6146  df-fun 6184  df-fn 6185  df-f 6186  df-f1 6187  df-fo 6188  df-f1o 6189  df-fv 6190  df-riota 6931  df-ov 6973  df-oprab 6974  df-1st 7495  df-2nd 7496  df-grpo 28041  df-gid 28042  df-ablo 28093  df-vc 28107  df-nv 28140  df-va 28143  df-ba 28144  df-sm 28145  df-0v 28146  df-nmcv 28148
This theorem is referenced by:  elimph  28368
  Copyright terms: Public domain W3C validator