![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimnv | Structured version Visualization version GIF version |
Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elimnv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
elimnv.5 | ⊢ 𝑍 = (0vec‘𝑈) |
elimnv.9 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
elimnv | ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimnv.9 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
2 | elimnv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | elimnv.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
4 | 2, 3 | nvzcl 30663 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ 𝑍 ∈ 𝑋 |
6 | 5 | elimel 4600 | 1 ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 ifcif 4531 ‘cfv 6563 NrmCVeccnv 30613 BaseSetcba 30615 0veccn0v 30617 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-1st 8013 df-2nd 8014 df-grpo 30522 df-gid 30523 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-nmcv 30629 |
This theorem is referenced by: elimph 30849 |
Copyright terms: Public domain | W3C validator |