Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elimnv | Structured version Visualization version GIF version |
Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elimnv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
elimnv.5 | ⊢ 𝑍 = (0vec‘𝑈) |
elimnv.9 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
elimnv | ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimnv.9 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
2 | elimnv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | elimnv.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
4 | 2, 3 | nvzcl 28975 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ 𝑍 ∈ 𝑋 |
6 | 5 | elimel 4533 | 1 ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ifcif 4464 ‘cfv 6430 NrmCVeccnv 28925 BaseSetcba 28927 0veccn0v 28929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-1st 7817 df-2nd 7818 df-grpo 28834 df-gid 28835 df-ablo 28886 df-vc 28900 df-nv 28933 df-va 28936 df-ba 28937 df-sm 28938 df-0v 28939 df-nmcv 28941 |
This theorem is referenced by: elimph 29161 |
Copyright terms: Public domain | W3C validator |