![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elimnv | Structured version Visualization version GIF version |
Description: Hypothesis elimination lemma for normed complex vector spaces to assist weak deduction theorem. (Contributed by NM, 16-May-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
elimnv.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
elimnv.5 | ⊢ 𝑍 = (0vec‘𝑈) |
elimnv.9 | ⊢ 𝑈 ∈ NrmCVec |
Ref | Expression |
---|---|
elimnv | ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elimnv.9 | . . 3 ⊢ 𝑈 ∈ NrmCVec | |
2 | elimnv.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
3 | elimnv.5 | . . . 4 ⊢ 𝑍 = (0vec‘𝑈) | |
4 | 2, 3 | nvzcl 28182 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
5 | 1, 4 | ax-mp 5 | . 2 ⊢ 𝑍 ∈ 𝑋 |
6 | 5 | elimel 4411 | 1 ⊢ if(𝐴 ∈ 𝑋, 𝐴, 𝑍) ∈ 𝑋 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∈ wcel 2050 ifcif 4344 ‘cfv 6182 NrmCVeccnv 28132 BaseSetcba 28134 0veccn0v 28136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2744 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2753 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3676 df-csb 3781 df-dif 3826 df-un 3828 df-in 3830 df-ss 3837 df-nul 4173 df-if 4345 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5306 df-xp 5407 df-rel 5408 df-cnv 5409 df-co 5410 df-dm 5411 df-rn 5412 df-res 5413 df-ima 5414 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-riota 6931 df-ov 6973 df-oprab 6974 df-1st 7495 df-2nd 7496 df-grpo 28041 df-gid 28042 df-ablo 28093 df-vc 28107 df-nv 28140 df-va 28143 df-ba 28144 df-sm 28145 df-0v 28146 df-nmcv 28148 |
This theorem is referenced by: elimph 28368 |
Copyright terms: Public domain | W3C validator |