![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvzcl | Structured version Visualization version GIF version |
Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvzcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvzcl.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvzcl | ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | nvzcl.6 | . . 3 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | 0vfval 30292 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
4 | 1 | nvgrp 30303 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
5 | nvzcl.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | 5, 1 | bafval 30290 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
7 | eqid 2731 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
8 | 6, 7 | grpoidcl 30200 | . . 3 ⊢ (( +𝑣 ‘𝑈) ∈ GrpOp → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
9 | 4, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
10 | 3, 9 | eqeltrd 2832 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6543 GrpOpcgr 30175 GIdcgi 30176 NrmCVeccnv 30270 +𝑣 cpv 30271 BaseSetcba 30272 0veccn0v 30274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-1st 7979 df-2nd 7980 df-grpo 30179 df-gid 30180 df-ablo 30231 df-vc 30245 df-nv 30278 df-va 30281 df-ba 30282 df-sm 30283 df-0v 30284 df-nmcv 30286 |
This theorem is referenced by: nvmeq0 30344 nvz0 30354 elimnv 30369 nvnd 30374 imsmetlem 30376 dip0r 30403 dip0l 30404 sspz 30421 lno0 30442 lnomul 30446 nvo00 30447 nmosetn0 30451 nmooge0 30453 0oo 30475 0lno 30476 nmoo0 30477 blocni 30491 ubthlem1 30556 minvecolem1 30560 hl0cl 30588 hhshsslem2 30954 |
Copyright terms: Public domain | W3C validator |