Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvzcl | Structured version Visualization version GIF version |
Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvzcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvzcl.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvzcl | ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | nvzcl.6 | . . 3 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | 0vfval 28869 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
4 | 1 | nvgrp 28880 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
5 | nvzcl.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | 5, 1 | bafval 28867 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
7 | eqid 2738 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
8 | 6, 7 | grpoidcl 28777 | . . 3 ⊢ (( +𝑣 ‘𝑈) ∈ GrpOp → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
9 | 4, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
10 | 3, 9 | eqeltrd 2839 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 ‘cfv 6418 GrpOpcgr 28752 GIdcgi 28753 NrmCVeccnv 28847 +𝑣 cpv 28848 BaseSetcba 28849 0veccn0v 28851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-1st 7804 df-2nd 7805 df-grpo 28756 df-gid 28757 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-nmcv 28863 |
This theorem is referenced by: nvmeq0 28921 nvz0 28931 elimnv 28946 nvnd 28951 imsmetlem 28953 dip0r 28980 dip0l 28981 sspz 28998 lno0 29019 lnomul 29023 nvo00 29024 nmosetn0 29028 nmooge0 29030 0oo 29052 0lno 29053 nmoo0 29054 blocni 29068 ubthlem1 29133 minvecolem1 29137 hl0cl 29165 hhshsslem2 29531 |
Copyright terms: Public domain | W3C validator |