| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvzcl | Structured version Visualization version GIF version | ||
| Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvzcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvzcl.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nvzcl | ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 2 | nvzcl.6 | . . 3 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | 1, 2 | 0vfval 30585 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
| 4 | 1 | nvgrp 30596 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
| 5 | nvzcl.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | 5, 1 | bafval 30583 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
| 7 | eqid 2729 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
| 8 | 6, 7 | grpoidcl 30493 | . . 3 ⊢ (( +𝑣 ‘𝑈) ∈ GrpOp → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
| 10 | 3, 9 | eqeltrd 2828 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 GrpOpcgr 30468 GIdcgi 30469 NrmCVeccnv 30563 +𝑣 cpv 30564 BaseSetcba 30565 0veccn0v 30567 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-1st 7947 df-2nd 7948 df-grpo 30472 df-gid 30473 df-ablo 30524 df-vc 30538 df-nv 30571 df-va 30574 df-ba 30575 df-sm 30576 df-0v 30577 df-nmcv 30579 |
| This theorem is referenced by: nvmeq0 30637 nvz0 30647 elimnv 30662 nvnd 30667 imsmetlem 30669 dip0r 30696 dip0l 30697 sspz 30714 lno0 30735 lnomul 30739 nvo00 30740 nmosetn0 30744 nmooge0 30746 0oo 30768 0lno 30769 nmoo0 30770 blocni 30784 ubthlem1 30849 minvecolem1 30853 hl0cl 30881 hhshsslem2 31247 |
| Copyright terms: Public domain | W3C validator |