MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvzcl Structured version   Visualization version   GIF version

Theorem nvzcl 28897
Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvzcl.1 𝑋 = (BaseSet‘𝑈)
nvzcl.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvzcl (𝑈 ∈ NrmCVec → 𝑍𝑋)

Proof of Theorem nvzcl
StepHypRef Expression
1 eqid 2738 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
2 nvzcl.6 . . 3 𝑍 = (0vec𝑈)
31, 20vfval 28869 . 2 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣𝑈)))
41nvgrp 28880 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ GrpOp)
5 nvzcl.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
65, 1bafval 28867 . . . 4 𝑋 = ran ( +𝑣𝑈)
7 eqid 2738 . . . 4 (GId‘( +𝑣𝑈)) = (GId‘( +𝑣𝑈))
86, 7grpoidcl 28777 . . 3 (( +𝑣𝑈) ∈ GrpOp → (GId‘( +𝑣𝑈)) ∈ 𝑋)
94, 8syl 17 . 2 (𝑈 ∈ NrmCVec → (GId‘( +𝑣𝑈)) ∈ 𝑋)
103, 9eqeltrd 2839 1 (𝑈 ∈ NrmCVec → 𝑍𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  cfv 6418  GrpOpcgr 28752  GIdcgi 28753  NrmCVeccnv 28847   +𝑣 cpv 28848  BaseSetcba 28849  0veccn0v 28851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-1st 7804  df-2nd 7805  df-grpo 28756  df-gid 28757  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-nmcv 28863
This theorem is referenced by:  nvmeq0  28921  nvz0  28931  elimnv  28946  nvnd  28951  imsmetlem  28953  dip0r  28980  dip0l  28981  sspz  28998  lno0  29019  lnomul  29023  nvo00  29024  nmosetn0  29028  nmooge0  29030  0oo  29052  0lno  29053  nmoo0  29054  blocni  29068  ubthlem1  29133  minvecolem1  29137  hl0cl  29165  hhshsslem2  29531
  Copyright terms: Public domain W3C validator