MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvzcl Structured version   Visualization version   GIF version

Theorem nvzcl 30666
Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvzcl.1 𝑋 = (BaseSet‘𝑈)
nvzcl.6 𝑍 = (0vec𝑈)
Assertion
Ref Expression
nvzcl (𝑈 ∈ NrmCVec → 𝑍𝑋)

Proof of Theorem nvzcl
StepHypRef Expression
1 eqid 2740 . . 3 ( +𝑣𝑈) = ( +𝑣𝑈)
2 nvzcl.6 . . 3 𝑍 = (0vec𝑈)
31, 20vfval 30638 . 2 (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣𝑈)))
41nvgrp 30649 . . 3 (𝑈 ∈ NrmCVec → ( +𝑣𝑈) ∈ GrpOp)
5 nvzcl.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
65, 1bafval 30636 . . . 4 𝑋 = ran ( +𝑣𝑈)
7 eqid 2740 . . . 4 (GId‘( +𝑣𝑈)) = (GId‘( +𝑣𝑈))
86, 7grpoidcl 30546 . . 3 (( +𝑣𝑈) ∈ GrpOp → (GId‘( +𝑣𝑈)) ∈ 𝑋)
94, 8syl 17 . 2 (𝑈 ∈ NrmCVec → (GId‘( +𝑣𝑈)) ∈ 𝑋)
103, 9eqeltrd 2844 1 (𝑈 ∈ NrmCVec → 𝑍𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  cfv 6573  GrpOpcgr 30521  GIdcgi 30522  NrmCVeccnv 30616   +𝑣 cpv 30617  BaseSetcba 30618  0veccn0v 30620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-1st 8030  df-2nd 8031  df-grpo 30525  df-gid 30526  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-nmcv 30632
This theorem is referenced by:  nvmeq0  30690  nvz0  30700  elimnv  30715  nvnd  30720  imsmetlem  30722  dip0r  30749  dip0l  30750  sspz  30767  lno0  30788  lnomul  30792  nvo00  30793  nmosetn0  30797  nmooge0  30799  0oo  30821  0lno  30822  nmoo0  30823  blocni  30837  ubthlem1  30902  minvecolem1  30906  hl0cl  30934  hhshsslem2  31300
  Copyright terms: Public domain W3C validator