Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nvzcl | Structured version Visualization version GIF version |
Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvzcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvzcl.6 | ⊢ 𝑍 = (0vec‘𝑈) |
Ref | Expression |
---|---|
nvzcl | ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
2 | nvzcl.6 | . . 3 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | 0vfval 28968 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
4 | 1 | nvgrp 28979 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
5 | nvzcl.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
6 | 5, 1 | bafval 28966 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
7 | eqid 2738 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
8 | 6, 7 | grpoidcl 28876 | . . 3 ⊢ (( +𝑣 ‘𝑈) ∈ GrpOp → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
9 | 4, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
10 | 3, 9 | eqeltrd 2839 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 GrpOpcgr 28851 GIdcgi 28852 NrmCVeccnv 28946 +𝑣 cpv 28947 BaseSetcba 28948 0veccn0v 28950 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-1st 7831 df-2nd 7832 df-grpo 28855 df-gid 28856 df-ablo 28907 df-vc 28921 df-nv 28954 df-va 28957 df-ba 28958 df-sm 28959 df-0v 28960 df-nmcv 28962 |
This theorem is referenced by: nvmeq0 29020 nvz0 29030 elimnv 29045 nvnd 29050 imsmetlem 29052 dip0r 29079 dip0l 29080 sspz 29097 lno0 29118 lnomul 29122 nvo00 29123 nmosetn0 29127 nmooge0 29129 0oo 29151 0lno 29152 nmoo0 29153 blocni 29167 ubthlem1 29232 minvecolem1 29236 hl0cl 29264 hhshsslem2 29630 |
Copyright terms: Public domain | W3C validator |