| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvzcl | Structured version Visualization version GIF version | ||
| Description: Closure law for the zero vector of a normed complex vector space. (Contributed by NM, 27-Nov-2007.) (Revised by Mario Carneiro, 21-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvzcl.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvzcl.6 | ⊢ 𝑍 = (0vec‘𝑈) |
| Ref | Expression |
|---|---|
| nvzcl | ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 2 | nvzcl.6 | . . 3 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | 1, 2 | 0vfval 30535 | . 2 ⊢ (𝑈 ∈ NrmCVec → 𝑍 = (GId‘( +𝑣 ‘𝑈))) |
| 4 | 1 | nvgrp 30546 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( +𝑣 ‘𝑈) ∈ GrpOp) |
| 5 | nvzcl.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 6 | 5, 1 | bafval 30533 | . . . 4 ⊢ 𝑋 = ran ( +𝑣 ‘𝑈) |
| 7 | eqid 2729 | . . . 4 ⊢ (GId‘( +𝑣 ‘𝑈)) = (GId‘( +𝑣 ‘𝑈)) | |
| 8 | 6, 7 | grpoidcl 30443 | . . 3 ⊢ (( +𝑣 ‘𝑈) ∈ GrpOp → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
| 9 | 4, 8 | syl 17 | . 2 ⊢ (𝑈 ∈ NrmCVec → (GId‘( +𝑣 ‘𝑈)) ∈ 𝑋) |
| 10 | 3, 9 | eqeltrd 2828 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 GrpOpcgr 30418 GIdcgi 30419 NrmCVeccnv 30513 +𝑣 cpv 30514 BaseSetcba 30515 0veccn0v 30517 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-1st 7968 df-2nd 7969 df-grpo 30422 df-gid 30423 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-nmcv 30529 |
| This theorem is referenced by: nvmeq0 30587 nvz0 30597 elimnv 30612 nvnd 30617 imsmetlem 30619 dip0r 30646 dip0l 30647 sspz 30664 lno0 30685 lnomul 30689 nvo00 30690 nmosetn0 30694 nmooge0 30696 0oo 30718 0lno 30719 nmoo0 30720 blocni 30734 ubthlem1 30799 minvecolem1 30803 hl0cl 30831 hhshsslem2 31197 |
| Copyright terms: Public domain | W3C validator |