![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnnvm | Structured version Visualization version GIF version |
Description: The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cnnvm.6 | β’ π = β¨β¨ + , Β· β©, absβ© |
Ref | Expression |
---|---|
cnnvm | β’ β = ( βπ£ βπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mulm1 11654 | . . . . . 6 β’ (π¦ β β β (-1 Β· π¦) = -π¦) | |
2 | 1 | adantl 481 | . . . . 5 β’ ((π₯ β β β§ π¦ β β) β (-1 Β· π¦) = -π¦) |
3 | 2 | oveq2d 7418 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯ + (-1 Β· π¦)) = (π₯ + -π¦)) |
4 | negsub 11507 | . . . 4 β’ ((π₯ β β β§ π¦ β β) β (π₯ + -π¦) = (π₯ β π¦)) | |
5 | 3, 4 | eqtr2d 2765 | . . 3 β’ ((π₯ β β β§ π¦ β β) β (π₯ β π¦) = (π₯ + (-1 Β· π¦))) |
6 | 5 | mpoeq3ia 7480 | . 2 β’ (π₯ β β, π¦ β β β¦ (π₯ β π¦)) = (π₯ β β, π¦ β β β¦ (π₯ + (-1 Β· π¦))) |
7 | subf 11461 | . . . 4 β’ β :(β Γ β)βΆβ | |
8 | ffn 6708 | . . . 4 β’ ( β :(β Γ β)βΆβ β β Fn (β Γ β)) | |
9 | 7, 8 | ax-mp 5 | . . 3 β’ β Fn (β Γ β) |
10 | fnov 7533 | . . 3 β’ ( β Fn (β Γ β) β β = (π₯ β β, π¦ β β β¦ (π₯ β π¦))) | |
11 | 9, 10 | mpbi 229 | . 2 β’ β = (π₯ β β, π¦ β β β¦ (π₯ β π¦)) |
12 | cnnvm.6 | . . . 4 β’ π = β¨β¨ + , Β· β©, absβ© | |
13 | 12 | cnnv 30425 | . . 3 β’ π β NrmCVec |
14 | 12 | cnnvba 30427 | . . . 4 β’ β = (BaseSetβπ) |
15 | 12 | cnnvg 30426 | . . . 4 β’ + = ( +π£ βπ) |
16 | 12 | cnnvs 30428 | . . . 4 β’ Β· = ( Β·π OLD βπ) |
17 | eqid 2724 | . . . 4 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
18 | 14, 15, 16, 17 | nvmfval 30392 | . . 3 β’ (π β NrmCVec β ( βπ£ βπ) = (π₯ β β, π¦ β β β¦ (π₯ + (-1 Β· π¦)))) |
19 | 13, 18 | ax-mp 5 | . 2 β’ ( βπ£ βπ) = (π₯ β β, π¦ β β β¦ (π₯ + (-1 Β· π¦))) |
20 | 6, 11, 19 | 3eqtr4i 2762 | 1 β’ β = ( βπ£ βπ) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 395 = wceq 1533 β wcel 2098 β¨cop 4627 Γ cxp 5665 Fn wfn 6529 βΆwf 6530 βcfv 6534 (class class class)co 7402 β cmpo 7404 βcc 11105 1c1 11108 + caddc 11110 Β· cmul 11112 β cmin 11443 -cneg 11444 abscabs 15183 NrmCVeccnv 30332 βπ£ cnsb 30337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 ax-mulf 11187 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-sup 9434 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-rp 12976 df-seq 13968 df-exp 14029 df-cj 15048 df-re 15049 df-im 15050 df-sqrt 15184 df-abs 15185 df-grpo 30241 df-gid 30242 df-ginv 30243 df-gdiv 30244 df-ablo 30293 df-vc 30307 df-nv 30340 df-va 30343 df-ba 30344 df-sm 30345 df-0v 30346 df-vs 30347 df-nmcv 30348 |
This theorem is referenced by: cnims 30441 |
Copyright terms: Public domain | W3C validator |