| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnnvm | Structured version Visualization version GIF version | ||
| Description: The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cnnvm.6 | ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 |
| Ref | Expression |
|---|---|
| cnnvm | ⊢ − = ( −𝑣 ‘𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulm1 11565 | . . . . . 6 ⊢ (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦) | |
| 2 | 1 | adantl 481 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦) |
| 3 | 2 | oveq2d 7368 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦)) |
| 4 | negsub 11416 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥 − 𝑦)) | |
| 5 | 3, 4 | eqtr2d 2769 | . . 3 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 − 𝑦) = (𝑥 + (-1 · 𝑦))) |
| 6 | 5 | mpoeq3ia 7430 | . 2 ⊢ (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦))) |
| 7 | subf 11369 | . . . 4 ⊢ − :(ℂ × ℂ)⟶ℂ | |
| 8 | ffn 6656 | . . . 4 ⊢ ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ)) | |
| 9 | 7, 8 | ax-mp 5 | . . 3 ⊢ − Fn (ℂ × ℂ) |
| 10 | fnov 7483 | . . 3 ⊢ ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦))) | |
| 11 | 9, 10 | mpbi 230 | . 2 ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 − 𝑦)) |
| 12 | cnnvm.6 | . . . 4 ⊢ 𝑈 = 〈〈 + , · 〉, abs〉 | |
| 13 | 12 | cnnv 30659 | . . 3 ⊢ 𝑈 ∈ NrmCVec |
| 14 | 12 | cnnvba 30661 | . . . 4 ⊢ ℂ = (BaseSet‘𝑈) |
| 15 | 12 | cnnvg 30660 | . . . 4 ⊢ + = ( +𝑣 ‘𝑈) |
| 16 | 12 | cnnvs 30662 | . . . 4 ⊢ · = ( ·𝑠OLD ‘𝑈) |
| 17 | eqid 2733 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
| 18 | 14, 15, 16, 17 | nvmfval 30626 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( −𝑣 ‘𝑈) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦)))) |
| 19 | 13, 18 | ax-mp 5 | . 2 ⊢ ( −𝑣 ‘𝑈) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦))) |
| 20 | 6, 11, 19 | 3eqtr4i 2766 | 1 ⊢ − = ( −𝑣 ‘𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 〈cop 4581 × cxp 5617 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ∈ cmpo 7354 ℂcc 11011 1c1 11014 + caddc 11016 · cmul 11018 − cmin 11351 -cneg 11352 abscabs 15143 NrmCVeccnv 30566 −𝑣 cnsb 30571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 ax-mulf 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-grpo 30475 df-gid 30476 df-ginv 30477 df-gdiv 30478 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-vs 30581 df-nmcv 30582 |
| This theorem is referenced by: cnims 30675 |
| Copyright terms: Public domain | W3C validator |