MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnnvm Structured version   Visualization version   GIF version

Theorem cnnvm 30711
Description: The vector subtraction operation of the normed complex vector space of complex numbers. (Contributed by NM, 12-Jan-2008.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
cnnvm.6 𝑈 = ⟨⟨ + , · ⟩, abs⟩
Assertion
Ref Expression
cnnvm − = ( −𝑣𝑈)

Proof of Theorem cnnvm
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulm1 11702 . . . . . 6 (𝑦 ∈ ℂ → (-1 · 𝑦) = -𝑦)
21adantl 481 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (-1 · 𝑦) = -𝑦)
32oveq2d 7447 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + (-1 · 𝑦)) = (𝑥 + -𝑦))
4 negsub 11555 . . . 4 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + -𝑦) = (𝑥𝑦))
53, 4eqtr2d 2776 . . 3 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥𝑦) = (𝑥 + (-1 · 𝑦)))
65mpoeq3ia 7511 . 2 (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦)))
7 subf 11508 . . . 4 − :(ℂ × ℂ)⟶ℂ
8 ffn 6737 . . . 4 ( − :(ℂ × ℂ)⟶ℂ → − Fn (ℂ × ℂ))
97, 8ax-mp 5 . . 3 − Fn (ℂ × ℂ)
10 fnov 7564 . . 3 ( − Fn (ℂ × ℂ) ↔ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦)))
119, 10mpbi 230 . 2 − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥𝑦))
12 cnnvm.6 . . . 4 𝑈 = ⟨⟨ + , · ⟩, abs⟩
1312cnnv 30706 . . 3 𝑈 ∈ NrmCVec
1412cnnvba 30708 . . . 4 ℂ = (BaseSet‘𝑈)
1512cnnvg 30707 . . . 4 + = ( +𝑣𝑈)
1612cnnvs 30709 . . . 4 · = ( ·𝑠OLD𝑈)
17 eqid 2735 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
1814, 15, 16, 17nvmfval 30673 . . 3 (𝑈 ∈ NrmCVec → ( −𝑣𝑈) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦))))
1913, 18ax-mp 5 . 2 ( −𝑣𝑈) = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (𝑥 + (-1 · 𝑦)))
206, 11, 193eqtr4i 2773 1 − = ( −𝑣𝑈)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  cop 4637   × cxp 5687   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  cmpo 7433  cc 11151  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  abscabs 15270  NrmCVeccnv 30613  𝑣 cnsb 30618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232  ax-mulf 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629
This theorem is referenced by:  cnims  30722
  Copyright terms: Public domain W3C validator