![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fct2relem | Structured version Visualization version GIF version |
Description: Lemma for ftc2re 34575. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
ftc2re.e | ⊢ 𝐸 = (𝐶(,)𝐷) |
ftc2re.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
ftc2re.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
Ref | Expression |
---|---|
fct2relem | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc2re.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
2 | ftc2re.e | . . . . . 6 ⊢ 𝐸 = (𝐶(,)𝐷) | |
3 | 1, 2 | eleqtrdi 2854 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶(,)𝐷)) |
4 | eliooxr 13465 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
7 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
8 | eliooord 13466 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) |
10 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 < 𝐴) |
11 | ftc2re.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
12 | 11, 2 | eleqtrdi 2854 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶(,)𝐷)) |
13 | eliooord 13466 | . . . . 5 ⊢ (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) |
15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) |
16 | iccssioo 13476 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴 ∧ 𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) | |
17 | 6, 7, 10, 15, 16 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) |
18 | 17, 2 | sseqtrrdi 4060 | 1 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 class class class wbr 5166 (class class class)co 7448 ℝ*cxr 11323 < clt 11324 (,)cioo 13407 [,]cicc 13410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 df-icc 13414 |
This theorem is referenced by: ftc2re 34575 fdvposlt 34576 fdvneggt 34577 fdvposle 34578 fdvnegge 34579 logdivsqrle 34627 |
Copyright terms: Public domain | W3C validator |