Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fct2relem Structured version   Visualization version   GIF version

Theorem fct2relem 34571
Description: Lemma for ftc2re 34572. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
Assertion
Ref Expression
fct2relem (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)

Proof of Theorem fct2relem
StepHypRef Expression
1 ftc2re.a . . . . . 6 (𝜑𝐴𝐸)
2 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
31, 2eleqtrdi 2838 . . . . 5 (𝜑𝐴 ∈ (𝐶(,)𝐷))
4 eliooxr 13307 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
53, 4syl 17 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
65simpld 494 . . 3 (𝜑𝐶 ∈ ℝ*)
75simprd 495 . . 3 (𝜑𝐷 ∈ ℝ*)
8 eliooord 13308 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴𝐴 < 𝐷))
93, 8syl 17 . . . 4 (𝜑 → (𝐶 < 𝐴𝐴 < 𝐷))
109simpld 494 . . 3 (𝜑𝐶 < 𝐴)
11 ftc2re.b . . . . . 6 (𝜑𝐵𝐸)
1211, 2eleqtrdi 2838 . . . . 5 (𝜑𝐵 ∈ (𝐶(,)𝐷))
13 eliooord 13308 . . . . 5 (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵𝐵 < 𝐷))
1412, 13syl 17 . . . 4 (𝜑 → (𝐶 < 𝐵𝐵 < 𝐷))
1514simprd 495 . . 3 (𝜑𝐵 < 𝐷)
16 iccssioo 13318 . . 3 (((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
176, 7, 10, 15, 16syl22anc 838 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
1817, 2sseqtrrdi 3977 1 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903   class class class wbr 5092  (class class class)co 7349  *cxr 11148   < clt 11149  (,)cioo 13248  [,]cicc 13251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-ioo 13252  df-icc 13255
This theorem is referenced by:  ftc2re  34572  fdvposlt  34573  fdvneggt  34574  fdvposle  34575  fdvnegge  34576  logdivsqrle  34624
  Copyright terms: Public domain W3C validator