Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fct2relem Structured version   Visualization version   GIF version

Theorem fct2relem 34127
Description: Lemma for ftc2re 34128. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
Assertion
Ref Expression
fct2relem (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)

Proof of Theorem fct2relem
StepHypRef Expression
1 ftc2re.a . . . . . 6 (𝜑𝐴𝐸)
2 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
31, 2eleqtrdi 2835 . . . . 5 (𝜑𝐴 ∈ (𝐶(,)𝐷))
4 eliooxr 13383 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
53, 4syl 17 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
65simpld 494 . . 3 (𝜑𝐶 ∈ ℝ*)
75simprd 495 . . 3 (𝜑𝐷 ∈ ℝ*)
8 eliooord 13384 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴𝐴 < 𝐷))
93, 8syl 17 . . . 4 (𝜑 → (𝐶 < 𝐴𝐴 < 𝐷))
109simpld 494 . . 3 (𝜑𝐶 < 𝐴)
11 ftc2re.b . . . . . 6 (𝜑𝐵𝐸)
1211, 2eleqtrdi 2835 . . . . 5 (𝜑𝐵 ∈ (𝐶(,)𝐷))
13 eliooord 13384 . . . . 5 (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵𝐵 < 𝐷))
1412, 13syl 17 . . . 4 (𝜑 → (𝐶 < 𝐵𝐵 < 𝐷))
1514simprd 495 . . 3 (𝜑𝐵 < 𝐷)
16 iccssioo 13394 . . 3 (((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
176, 7, 10, 15, 16syl22anc 836 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
1817, 2sseqtrrdi 4026 1 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wss 3941   class class class wbr 5139  (class class class)co 7402  *cxr 11246   < clt 11247  (,)cioo 13325  [,]cicc 13328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-cnex 11163  ax-resscn 11164  ax-pre-lttri 11181  ax-pre-lttrn 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-po 5579  df-so 5580  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-ov 7405  df-oprab 7406  df-mpo 7407  df-1st 7969  df-2nd 7970  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-ioo 13329  df-icc 13332
This theorem is referenced by:  ftc2re  34128  fdvposlt  34129  fdvneggt  34130  fdvposle  34131  fdvnegge  34132  logdivsqrle  34180
  Copyright terms: Public domain W3C validator