Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fct2relem Structured version   Visualization version   GIF version

Theorem fct2relem 34591
Description: Lemma for ftc2re 34592. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
Assertion
Ref Expression
fct2relem (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)

Proof of Theorem fct2relem
StepHypRef Expression
1 ftc2re.a . . . . . 6 (𝜑𝐴𝐸)
2 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
31, 2eleqtrdi 2849 . . . . 5 (𝜑𝐴 ∈ (𝐶(,)𝐷))
4 eliooxr 13442 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
53, 4syl 17 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
65simpld 494 . . 3 (𝜑𝐶 ∈ ℝ*)
75simprd 495 . . 3 (𝜑𝐷 ∈ ℝ*)
8 eliooord 13443 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴𝐴 < 𝐷))
93, 8syl 17 . . . 4 (𝜑 → (𝐶 < 𝐴𝐴 < 𝐷))
109simpld 494 . . 3 (𝜑𝐶 < 𝐴)
11 ftc2re.b . . . . . 6 (𝜑𝐵𝐸)
1211, 2eleqtrdi 2849 . . . . 5 (𝜑𝐵 ∈ (𝐶(,)𝐷))
13 eliooord 13443 . . . . 5 (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵𝐵 < 𝐷))
1412, 13syl 17 . . . 4 (𝜑 → (𝐶 < 𝐵𝐵 < 𝐷))
1514simprd 495 . . 3 (𝜑𝐵 < 𝐷)
16 iccssioo 13453 . . 3 (((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
176, 7, 10, 15, 16syl22anc 839 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
1817, 2sseqtrrdi 4047 1 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963   class class class wbr 5148  (class class class)co 7431  *cxr 11292   < clt 11293  (,)cioo 13384  [,]cicc 13387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-pre-lttri 11227  ax-pre-lttrn 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-ioo 13388  df-icc 13391
This theorem is referenced by:  ftc2re  34592  fdvposlt  34593  fdvneggt  34594  fdvposle  34595  fdvnegge  34596  logdivsqrle  34644
  Copyright terms: Public domain W3C validator