![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fct2relem | Structured version Visualization version GIF version |
Description: Lemma for ftc2re 34128. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
ftc2re.e | ⊢ 𝐸 = (𝐶(,)𝐷) |
ftc2re.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
ftc2re.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
Ref | Expression |
---|---|
fct2relem | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc2re.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
2 | ftc2re.e | . . . . . 6 ⊢ 𝐸 = (𝐶(,)𝐷) | |
3 | 1, 2 | eleqtrdi 2835 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶(,)𝐷)) |
4 | eliooxr 13383 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
7 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
8 | eliooord 13384 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) |
10 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 < 𝐴) |
11 | ftc2re.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
12 | 11, 2 | eleqtrdi 2835 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶(,)𝐷)) |
13 | eliooord 13384 | . . . . 5 ⊢ (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) |
15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) |
16 | iccssioo 13394 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴 ∧ 𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) | |
17 | 6, 7, 10, 15, 16 | syl22anc 836 | . 2 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) |
18 | 17, 2 | sseqtrrdi 4026 | 1 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ⊆ wss 3941 class class class wbr 5139 (class class class)co 7402 ℝ*cxr 11246 < clt 11247 (,)cioo 13325 [,]cicc 13328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-pre-lttri 11181 ax-pre-lttrn 11182 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-po 5579 df-so 5580 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-ioo 13329 df-icc 13332 |
This theorem is referenced by: ftc2re 34128 fdvposlt 34129 fdvneggt 34130 fdvposle 34131 fdvnegge 34132 logdivsqrle 34180 |
Copyright terms: Public domain | W3C validator |