![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fct2relem | Structured version Visualization version GIF version |
Description: Lemma for ftc2re 34230. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
ftc2re.e | ⊢ 𝐸 = (𝐶(,)𝐷) |
ftc2re.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
ftc2re.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
Ref | Expression |
---|---|
fct2relem | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc2re.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
2 | ftc2re.e | . . . . . 6 ⊢ 𝐸 = (𝐶(,)𝐷) | |
3 | 1, 2 | eleqtrdi 2839 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶(,)𝐷)) |
4 | eliooxr 13414 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
7 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
8 | eliooord 13415 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) |
10 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 < 𝐴) |
11 | ftc2re.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
12 | 11, 2 | eleqtrdi 2839 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶(,)𝐷)) |
13 | eliooord 13415 | . . . . 5 ⊢ (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) |
15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) |
16 | iccssioo 13425 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴 ∧ 𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) | |
17 | 6, 7, 10, 15, 16 | syl22anc 838 | . 2 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) |
18 | 17, 2 | sseqtrrdi 4031 | 1 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3947 class class class wbr 5148 (class class class)co 7420 ℝ*cxr 11277 < clt 11278 (,)cioo 13356 [,]cicc 13359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-pre-lttri 11212 ax-pre-lttrn 11213 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-po 5590 df-so 5591 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-1st 7993 df-2nd 7994 df-er 8724 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-ioo 13360 df-icc 13363 |
This theorem is referenced by: ftc2re 34230 fdvposlt 34231 fdvneggt 34232 fdvposle 34233 fdvnegge 34234 logdivsqrle 34282 |
Copyright terms: Public domain | W3C validator |