Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fct2relem Structured version   Visualization version   GIF version

Theorem fct2relem 32577
Description: Lemma for ftc2re 32578. (Contributed by Thierry Arnoux, 20-Dec-2021.)
Hypotheses
Ref Expression
ftc2re.e 𝐸 = (𝐶(,)𝐷)
ftc2re.a (𝜑𝐴𝐸)
ftc2re.b (𝜑𝐵𝐸)
Assertion
Ref Expression
fct2relem (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)

Proof of Theorem fct2relem
StepHypRef Expression
1 ftc2re.a . . . . . 6 (𝜑𝐴𝐸)
2 ftc2re.e . . . . . 6 𝐸 = (𝐶(,)𝐷)
31, 2eleqtrdi 2849 . . . . 5 (𝜑𝐴 ∈ (𝐶(,)𝐷))
4 eliooxr 13137 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
53, 4syl 17 . . . 4 (𝜑 → (𝐶 ∈ ℝ*𝐷 ∈ ℝ*))
65simpld 495 . . 3 (𝜑𝐶 ∈ ℝ*)
75simprd 496 . . 3 (𝜑𝐷 ∈ ℝ*)
8 eliooord 13138 . . . . 5 (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴𝐴 < 𝐷))
93, 8syl 17 . . . 4 (𝜑 → (𝐶 < 𝐴𝐴 < 𝐷))
109simpld 495 . . 3 (𝜑𝐶 < 𝐴)
11 ftc2re.b . . . . . 6 (𝜑𝐵𝐸)
1211, 2eleqtrdi 2849 . . . . 5 (𝜑𝐵 ∈ (𝐶(,)𝐷))
13 eliooord 13138 . . . . 5 (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵𝐵 < 𝐷))
1412, 13syl 17 . . . 4 (𝜑 → (𝐶 < 𝐵𝐵 < 𝐷))
1514simprd 496 . . 3 (𝜑𝐵 < 𝐷)
16 iccssioo 13148 . . 3 (((𝐶 ∈ ℝ*𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
176, 7, 10, 15, 16syl22anc 836 . 2 (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷))
1817, 2sseqtrrdi 3972 1 (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wss 3887   class class class wbr 5074  (class class class)co 7275  *cxr 11008   < clt 11009  (,)cioo 13079  [,]cicc 13082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-ioo 13083  df-icc 13086
This theorem is referenced by:  ftc2re  32578  fdvposlt  32579  fdvneggt  32580  fdvposle  32581  fdvnegge  32582  logdivsqrle  32630
  Copyright terms: Public domain W3C validator