![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fct2relem | Structured version Visualization version GIF version |
Description: Lemma for ftc2re 34454. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
ftc2re.e | ⊢ 𝐸 = (𝐶(,)𝐷) |
ftc2re.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
ftc2re.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
Ref | Expression |
---|---|
fct2relem | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc2re.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
2 | ftc2re.e | . . . . . 6 ⊢ 𝐸 = (𝐶(,)𝐷) | |
3 | 1, 2 | eleqtrdi 2836 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶(,)𝐷)) |
4 | eliooxr 13427 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) |
6 | 5 | simpld 493 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
7 | 5 | simprd 494 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
8 | eliooord 13428 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) |
10 | 9 | simpld 493 | . . 3 ⊢ (𝜑 → 𝐶 < 𝐴) |
11 | ftc2re.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
12 | 11, 2 | eleqtrdi 2836 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶(,)𝐷)) |
13 | eliooord 13428 | . . . . 5 ⊢ (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) |
15 | 14 | simprd 494 | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) |
16 | iccssioo 13438 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴 ∧ 𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) | |
17 | 6, 7, 10, 15, 16 | syl22anc 837 | . 2 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) |
18 | 17, 2 | sseqtrrdi 4030 | 1 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ⊆ wss 3946 class class class wbr 5143 (class class class)co 7413 ℝ*cxr 11285 < clt 11286 (,)cioo 13369 [,]cicc 13372 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-pre-lttri 11220 ax-pre-lttrn 11221 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7992 df-2nd 7993 df-er 8723 df-en 8964 df-dom 8965 df-sdom 8966 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-ioo 13373 df-icc 13376 |
This theorem is referenced by: ftc2re 34454 fdvposlt 34455 fdvneggt 34456 fdvposle 34457 fdvnegge 34458 logdivsqrle 34506 |
Copyright terms: Public domain | W3C validator |