Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fct2relem | Structured version Visualization version GIF version |
Description: Lemma for ftc2re 32478. (Contributed by Thierry Arnoux, 20-Dec-2021.) |
Ref | Expression |
---|---|
ftc2re.e | ⊢ 𝐸 = (𝐶(,)𝐷) |
ftc2re.a | ⊢ (𝜑 → 𝐴 ∈ 𝐸) |
ftc2re.b | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
Ref | Expression |
---|---|
fct2relem | ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ftc2re.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐸) | |
2 | ftc2re.e | . . . . . 6 ⊢ 𝐸 = (𝐶(,)𝐷) | |
3 | 1, 2 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ (𝐶(,)𝐷)) |
4 | eliooxr 13066 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*)) |
6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
7 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ*) |
8 | eliooord 13067 | . . . . 5 ⊢ (𝐴 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) | |
9 | 3, 8 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐴 ∧ 𝐴 < 𝐷)) |
10 | 9 | simpld 494 | . . 3 ⊢ (𝜑 → 𝐶 < 𝐴) |
11 | ftc2re.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
12 | 11, 2 | eleqtrdi 2849 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ (𝐶(,)𝐷)) |
13 | eliooord 13067 | . . . . 5 ⊢ (𝐵 ∈ (𝐶(,)𝐷) → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐶 < 𝐵 ∧ 𝐵 < 𝐷)) |
15 | 14 | simprd 495 | . . 3 ⊢ (𝜑 → 𝐵 < 𝐷) |
16 | iccssioo 13077 | . . 3 ⊢ (((𝐶 ∈ ℝ* ∧ 𝐷 ∈ ℝ*) ∧ (𝐶 < 𝐴 ∧ 𝐵 < 𝐷)) → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) | |
17 | 6, 7, 10, 15, 16 | syl22anc 835 | . 2 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (𝐶(,)𝐷)) |
18 | 17, 2 | sseqtrrdi 3968 | 1 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 (class class class)co 7255 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 df-icc 13015 |
This theorem is referenced by: ftc2re 32478 fdvposlt 32479 fdvneggt 32480 fdvposle 32481 fdvnegge 32482 logdivsqrle 32530 |
Copyright terms: Public domain | W3C validator |