MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Structured version   Visualization version   GIF version

Theorem eliooord 13466
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 13465 . . . 4 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
2 elioo2 13448 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
31, 2syl 17 . . 3 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
43ibi 267 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶))
5 3simpc 1150 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
64, 5syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108   class class class wbr 5166  (class class class)co 7448  cr 11183  *cxr 11323   < clt 11324  (,)cioo 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-pre-lttri 11258  ax-pre-lttrn 11259
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-ioo 13411
This theorem is referenced by:  elioo4g  13467  iccssioo2  13480  qdensere  24811  zcld  24854  reconnlem2  24868  xrge0tsms  24875  ovolioo  25622  ioorcl2  25626  itgsplitioo  25893  dvferm1lem  26042  dvferm2lem  26044  dvferm  26046  dvlt0  26064  dvivthlem1  26067  lhop1lem  26072  lhop1  26073  lhop2  26074  dvcvx  26079  ftc1lem4  26100  itgsubstlem  26109  itgsubst  26110  pilem2  26514  pilem3  26515  pigt2lt4  26516  tangtx  26565  tanabsge  26566  cosne0  26589  cos0pilt1  26592  tanord  26598  tanregt0  26599  argimlt0  26673  logneg2  26675  divlogrlim  26695  logno1  26696  logcnlem3  26704  dvloglem  26708  logf1o2  26710  loglesqrt  26822  asinsin  26953  acoscos  26954  atanlogaddlem  26974  atanlogsub  26977  atantan  26984  atanbndlem  26986  scvxcvx  27047  lgamgulmlem2  27091  basellem8  27149  vmalogdivsum2  27600  vmalogdivsum  27601  2vmadivsumlem  27602  chpdifbndlem1  27615  selberg3lem1  27619  selberg3  27621  selberg4lem1  27622  selberg4  27623  selberg3r  27631  selberg4r  27632  selberg34r  27633  pntrlog2bndlem1  27639  pntrlog2bndlem2  27640  pntrlog2bndlem3  27641  pntrlog2bndlem4  27642  pntrlog2bndlem5  27643  pntrlog2bndlem6a  27644  pntrlog2bndlem6  27645  pntrlog2bnd  27646  pntpbnd1a  27647  pntpbnd1  27648  pntpbnd2  27649  pntpbnd  27650  pntibndlem2  27653  pntibndlem3  27654  pntibnd  27655  pntlemd  27656  pntlemb  27659  pntlemr  27664  pnt  27676  padicabv  27692  xrge0tsmsd  33041  fct2relem  34574  logdivsqrle  34627  knoppndvlem3  36480  iooelexlt  37328  relowlssretop  37329  poimir  37613  itg2gt0cn  37635  ftc1cnnclem  37651  aks4d1p1p5  42032  radcnvrat  44283  cncfiooicclem1  45814  itgioocnicc  45898  iblcncfioo  45899  amgmwlem  48896
  Copyright terms: Public domain W3C validator