MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Structured version   Visualization version   GIF version

Theorem eliooord 13383
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 13382 . . . 4 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
2 elioo2 13365 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
31, 2syl 17 . . 3 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
43ibi 267 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶))
5 3simpc 1151 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
64, 5syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088  wcel 2107   class class class wbr 5149  (class class class)co 7409  cr 11109  *cxr 11247   < clt 11248  (,)cioo 13324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-pre-lttri 11184  ax-pre-lttrn 11185
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-ioo 13328
This theorem is referenced by:  elioo4g  13384  iccssioo2  13397  qdensere  24286  zcld  24329  reconnlem2  24343  xrge0tsms  24350  ovolioo  25085  ioorcl2  25089  itgsplitioo  25355  dvferm1lem  25501  dvferm2lem  25503  dvferm  25505  dvlt0  25522  dvivthlem1  25525  lhop1lem  25530  lhop1  25531  lhop2  25532  dvcvx  25537  ftc1lem4  25556  itgsubstlem  25565  itgsubst  25566  pilem2  25964  pilem3  25965  pigt2lt4  25966  tangtx  26015  tanabsge  26016  cosne0  26038  cos0pilt1  26041  tanord  26047  tanregt0  26048  argimlt0  26121  logneg2  26123  divlogrlim  26143  logno1  26144  logcnlem3  26152  dvloglem  26156  logf1o2  26158  loglesqrt  26266  asinsin  26397  acoscos  26398  atanlogaddlem  26418  atanlogsub  26421  atantan  26428  atanbndlem  26430  scvxcvx  26490  lgamgulmlem2  26534  basellem8  26592  vmalogdivsum2  27041  vmalogdivsum  27042  2vmadivsumlem  27043  chpdifbndlem1  27056  selberg3lem1  27060  selberg3  27062  selberg4lem1  27063  selberg4  27064  selberg3r  27072  selberg4r  27073  selberg34r  27074  pntrlog2bndlem1  27080  pntrlog2bndlem2  27081  pntrlog2bndlem3  27082  pntrlog2bndlem4  27083  pntrlog2bndlem5  27084  pntrlog2bndlem6a  27085  pntrlog2bndlem6  27086  pntrlog2bnd  27087  pntpbnd1a  27088  pntpbnd1  27089  pntpbnd2  27090  pntpbnd  27091  pntibndlem2  27094  pntibndlem3  27095  pntibnd  27096  pntlemd  27097  pntlemb  27100  pntlemr  27105  pnt  27117  padicabv  27133  xrge0tsmsd  32209  fct2relem  33609  logdivsqrle  33662  knoppndvlem3  35390  iooelexlt  36243  relowlssretop  36244  poimir  36521  itg2gt0cn  36543  ftc1cnnclem  36559  aks4d1p1p5  40940  radcnvrat  43073  cncfiooicclem1  44609  itgioocnicc  44693  iblcncfioo  44694  amgmwlem  47849
  Copyright terms: Public domain W3C validator