![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version |
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliooxr 13384 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
2 | elioo2 13367 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
4 | 3 | ibi 266 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 class class class wbr 5148 (class class class)co 7411 ℝcr 11111 ℝ*cxr 11249 < clt 11250 (,)cioo 13326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-pre-lttri 11186 ax-pre-lttrn 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-ioo 13330 |
This theorem is referenced by: elioo4g 13386 iccssioo2 13399 qdensere 24293 zcld 24336 reconnlem2 24350 xrge0tsms 24357 ovolioo 25092 ioorcl2 25096 itgsplitioo 25362 dvferm1lem 25508 dvferm2lem 25510 dvferm 25512 dvlt0 25529 dvivthlem1 25532 lhop1lem 25537 lhop1 25538 lhop2 25539 dvcvx 25544 ftc1lem4 25563 itgsubstlem 25572 itgsubst 25573 pilem2 25971 pilem3 25972 pigt2lt4 25973 tangtx 26022 tanabsge 26023 cosne0 26045 cos0pilt1 26048 tanord 26054 tanregt0 26055 argimlt0 26128 logneg2 26130 divlogrlim 26150 logno1 26151 logcnlem3 26159 dvloglem 26163 logf1o2 26165 loglesqrt 26273 asinsin 26404 acoscos 26405 atanlogaddlem 26425 atanlogsub 26428 atantan 26435 atanbndlem 26437 scvxcvx 26497 lgamgulmlem2 26541 basellem8 26599 vmalogdivsum2 27048 vmalogdivsum 27049 2vmadivsumlem 27050 chpdifbndlem1 27063 selberg3lem1 27067 selberg3 27069 selberg4lem1 27070 selberg4 27071 selberg3r 27079 selberg4r 27080 selberg34r 27081 pntrlog2bndlem1 27087 pntrlog2bndlem2 27088 pntrlog2bndlem3 27089 pntrlog2bndlem4 27090 pntrlog2bndlem5 27091 pntrlog2bndlem6a 27092 pntrlog2bndlem6 27093 pntrlog2bnd 27094 pntpbnd1a 27095 pntpbnd1 27096 pntpbnd2 27097 pntpbnd 27098 pntibndlem2 27101 pntibndlem3 27102 pntibnd 27103 pntlemd 27104 pntlemb 27107 pntlemr 27112 pnt 27124 padicabv 27140 xrge0tsmsd 32250 fct2relem 33678 logdivsqrle 33731 knoppndvlem3 35476 iooelexlt 36329 relowlssretop 36330 poimir 36607 itg2gt0cn 36629 ftc1cnnclem 36645 aks4d1p1p5 41026 radcnvrat 43155 cncfiooicclem1 44688 itgioocnicc 44772 iblcncfioo 44773 amgmwlem 47927 |
Copyright terms: Public domain | W3C validator |