MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Structured version   Visualization version   GIF version

Theorem eliooord 13373
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 13372 . . . 4 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
2 elioo2 13354 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
31, 2syl 17 . . 3 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
43ibi 267 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶))
5 3simpc 1150 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
64, 5syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5110  (class class class)co 7390  cr 11074  *cxr 11214   < clt 11215  (,)cioo 13313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-ioo 13317
This theorem is referenced by:  elioo4g  13374  iccssioo2  13387  qdensere  24664  zcld  24709  reconnlem2  24723  xrge0tsms  24730  ovolioo  25476  ioorcl2  25480  itgsplitioo  25746  dvferm1lem  25895  dvferm2lem  25897  dvferm  25899  dvlt0  25917  dvivthlem1  25920  lhop1lem  25925  lhop1  25926  lhop2  25927  dvcvx  25932  ftc1lem4  25953  itgsubstlem  25962  itgsubst  25963  pilem2  26369  pilem3  26370  pigt2lt4  26371  tangtx  26421  tanabsge  26422  cosne0  26445  cos0pilt1  26448  tanord  26454  tanregt0  26455  argimlt0  26529  logneg2  26531  divlogrlim  26551  logno1  26552  logcnlem3  26560  dvloglem  26564  logf1o2  26566  loglesqrt  26678  asinsin  26809  acoscos  26810  atanlogaddlem  26830  atanlogsub  26833  atantan  26840  atanbndlem  26842  scvxcvx  26903  lgamgulmlem2  26947  basellem8  27005  vmalogdivsum2  27456  vmalogdivsum  27457  2vmadivsumlem  27458  chpdifbndlem1  27471  selberg3lem1  27475  selberg3  27477  selberg4lem1  27478  selberg4  27479  selberg3r  27487  selberg4r  27488  selberg34r  27489  pntrlog2bndlem1  27495  pntrlog2bndlem2  27496  pntrlog2bndlem3  27497  pntrlog2bndlem4  27498  pntrlog2bndlem5  27499  pntrlog2bndlem6a  27500  pntrlog2bndlem6  27501  pntrlog2bnd  27502  pntpbnd1a  27503  pntpbnd1  27504  pntpbnd2  27505  pntpbnd  27506  pntibndlem2  27509  pntibndlem3  27510  pntibnd  27511  pntlemd  27512  pntlemb  27515  pntlemr  27520  pnt  27532  padicabv  27548  xrge0tsmsd  33009  fct2relem  34595  logdivsqrle  34648  knoppndvlem3  36509  iooelexlt  37357  relowlssretop  37358  poimir  37654  itg2gt0cn  37676  ftc1cnnclem  37692  aks4d1p1p5  42070  radcnvrat  44310  cncfiooicclem1  45898  itgioocnicc  45982  iblcncfioo  45983  amgmwlem  49795
  Copyright terms: Public domain W3C validator