![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version |
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliooxr 13465 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
2 | elioo2 13448 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 ℝcr 11183 ℝ*cxr 11323 < clt 11324 (,)cioo 13407 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-ioo 13411 |
This theorem is referenced by: elioo4g 13467 iccssioo2 13480 qdensere 24811 zcld 24854 reconnlem2 24868 xrge0tsms 24875 ovolioo 25622 ioorcl2 25626 itgsplitioo 25893 dvferm1lem 26042 dvferm2lem 26044 dvferm 26046 dvlt0 26064 dvivthlem1 26067 lhop1lem 26072 lhop1 26073 lhop2 26074 dvcvx 26079 ftc1lem4 26100 itgsubstlem 26109 itgsubst 26110 pilem2 26514 pilem3 26515 pigt2lt4 26516 tangtx 26565 tanabsge 26566 cosne0 26589 cos0pilt1 26592 tanord 26598 tanregt0 26599 argimlt0 26673 logneg2 26675 divlogrlim 26695 logno1 26696 logcnlem3 26704 dvloglem 26708 logf1o2 26710 loglesqrt 26822 asinsin 26953 acoscos 26954 atanlogaddlem 26974 atanlogsub 26977 atantan 26984 atanbndlem 26986 scvxcvx 27047 lgamgulmlem2 27091 basellem8 27149 vmalogdivsum2 27600 vmalogdivsum 27601 2vmadivsumlem 27602 chpdifbndlem1 27615 selberg3lem1 27619 selberg3 27621 selberg4lem1 27622 selberg4 27623 selberg3r 27631 selberg4r 27632 selberg34r 27633 pntrlog2bndlem1 27639 pntrlog2bndlem2 27640 pntrlog2bndlem3 27641 pntrlog2bndlem4 27642 pntrlog2bndlem5 27643 pntrlog2bndlem6a 27644 pntrlog2bndlem6 27645 pntrlog2bnd 27646 pntpbnd1a 27647 pntpbnd1 27648 pntpbnd2 27649 pntpbnd 27650 pntibndlem2 27653 pntibndlem3 27654 pntibnd 27655 pntlemd 27656 pntlemb 27659 pntlemr 27664 pnt 27676 padicabv 27692 xrge0tsmsd 33041 fct2relem 34574 logdivsqrle 34627 knoppndvlem3 36480 iooelexlt 37328 relowlssretop 37329 poimir 37613 itg2gt0cn 37635 ftc1cnnclem 37651 aks4d1p1p5 42032 radcnvrat 44283 cncfiooicclem1 45814 itgioocnicc 45898 iblcncfioo 45899 amgmwlem 48896 |
Copyright terms: Public domain | W3C validator |