Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version |
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliooxr 13066 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
2 | elioo2 13049 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
4 | 3 | ibi 266 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
5 | 3simpc 1148 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 class class class wbr 5070 (class class class)co 7255 ℝcr 10801 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ioo 13012 |
This theorem is referenced by: elioo4g 13068 iccssioo2 13081 qdensere 23839 zcld 23882 reconnlem2 23896 xrge0tsms 23903 ovolioo 24637 ioorcl2 24641 itgsplitioo 24907 dvferm1lem 25053 dvferm2lem 25055 dvferm 25057 dvlt0 25074 dvivthlem1 25077 lhop1lem 25082 lhop1 25083 lhop2 25084 dvcvx 25089 ftc1lem4 25108 itgsubstlem 25117 itgsubst 25118 pilem2 25516 pilem3 25517 pigt2lt4 25518 tangtx 25567 tanabsge 25568 cosne0 25590 cos0pilt1 25593 tanord 25599 tanregt0 25600 argimlt0 25673 logneg2 25675 divlogrlim 25695 logno1 25696 logcnlem3 25704 dvloglem 25708 logf1o2 25710 loglesqrt 25816 asinsin 25947 acoscos 25948 atanlogaddlem 25968 atanlogsub 25971 atantan 25978 atanbndlem 25980 scvxcvx 26040 lgamgulmlem2 26084 basellem8 26142 vmalogdivsum2 26591 vmalogdivsum 26592 2vmadivsumlem 26593 chpdifbndlem1 26606 selberg3lem1 26610 selberg3 26612 selberg4lem1 26613 selberg4 26614 selberg3r 26622 selberg4r 26623 selberg34r 26624 pntrlog2bndlem1 26630 pntrlog2bndlem2 26631 pntrlog2bndlem3 26632 pntrlog2bndlem4 26633 pntrlog2bndlem5 26634 pntrlog2bndlem6a 26635 pntrlog2bndlem6 26636 pntrlog2bnd 26637 pntpbnd1a 26638 pntpbnd1 26639 pntpbnd2 26640 pntpbnd 26641 pntibndlem2 26644 pntibndlem3 26645 pntibnd 26646 pntlemd 26647 pntlemb 26650 pntlemr 26655 pnt 26667 padicabv 26683 xrge0tsmsd 31219 fct2relem 32477 logdivsqrle 32530 knoppndvlem3 34621 iooelexlt 35460 relowlssretop 35461 poimir 35737 itg2gt0cn 35759 ftc1cnnclem 35775 aks4d1p1p5 40011 radcnvrat 41821 cncfiooicclem1 43324 itgioocnicc 43408 iblcncfioo 43409 amgmwlem 46392 |
Copyright terms: Public domain | W3C validator |