| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version | ||
| Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr 13307 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
| 2 | elioo2 13289 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| 5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5092 (class class class)co 7349 ℝcr 11008 ℝ*cxr 11148 < clt 11149 (,)cioo 13248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-pre-lttri 11083 ax-pre-lttrn 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-ioo 13252 |
| This theorem is referenced by: elioo4g 13309 iccssioo2 13322 qdensere 24655 zcld 24700 reconnlem2 24714 xrge0tsms 24721 ovolioo 25467 ioorcl2 25471 itgsplitioo 25737 dvferm1lem 25886 dvferm2lem 25888 dvferm 25890 dvlt0 25908 dvivthlem1 25911 lhop1lem 25916 lhop1 25917 lhop2 25918 dvcvx 25923 ftc1lem4 25944 itgsubstlem 25953 itgsubst 25954 pilem2 26360 pilem3 26361 pigt2lt4 26362 tangtx 26412 tanabsge 26413 cosne0 26436 cos0pilt1 26439 tanord 26445 tanregt0 26446 argimlt0 26520 logneg2 26522 divlogrlim 26542 logno1 26543 logcnlem3 26551 dvloglem 26555 logf1o2 26557 loglesqrt 26669 asinsin 26800 acoscos 26801 atanlogaddlem 26821 atanlogsub 26824 atantan 26831 atanbndlem 26833 scvxcvx 26894 lgamgulmlem2 26938 basellem8 26996 vmalogdivsum2 27447 vmalogdivsum 27448 2vmadivsumlem 27449 chpdifbndlem1 27462 selberg3lem1 27466 selberg3 27468 selberg4lem1 27469 selberg4 27470 selberg3r 27478 selberg4r 27479 selberg34r 27480 pntrlog2bndlem1 27486 pntrlog2bndlem2 27487 pntrlog2bndlem3 27488 pntrlog2bndlem4 27489 pntrlog2bndlem5 27490 pntrlog2bndlem6a 27491 pntrlog2bndlem6 27492 pntrlog2bnd 27493 pntpbnd1a 27494 pntpbnd1 27495 pntpbnd2 27496 pntpbnd 27497 pntibndlem2 27500 pntibndlem3 27501 pntibnd 27502 pntlemd 27503 pntlemb 27506 pntlemr 27511 pnt 27523 padicabv 27539 xrge0tsmsd 33024 fct2relem 34581 logdivsqrle 34634 knoppndvlem3 36508 iooelexlt 37356 relowlssretop 37357 poimir 37653 itg2gt0cn 37675 ftc1cnnclem 37691 aks4d1p1p5 42068 radcnvrat 44307 cncfiooicclem1 45894 itgioocnicc 45978 iblcncfioo 45979 amgmwlem 49807 |
| Copyright terms: Public domain | W3C validator |