MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Structured version   Visualization version   GIF version

Theorem eliooord 13366
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 13365 . . . 4 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
2 elioo2 13347 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
31, 2syl 17 . . 3 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
43ibi 267 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶))
5 3simpc 1150 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
64, 5syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5107  (class class class)co 7387  cr 11067  *cxr 11207   < clt 11208  (,)cioo 13306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-ioo 13310
This theorem is referenced by:  elioo4g  13367  iccssioo2  13380  qdensere  24657  zcld  24702  reconnlem2  24716  xrge0tsms  24723  ovolioo  25469  ioorcl2  25473  itgsplitioo  25739  dvferm1lem  25888  dvferm2lem  25890  dvferm  25892  dvlt0  25910  dvivthlem1  25913  lhop1lem  25918  lhop1  25919  lhop2  25920  dvcvx  25925  ftc1lem4  25946  itgsubstlem  25955  itgsubst  25956  pilem2  26362  pilem3  26363  pigt2lt4  26364  tangtx  26414  tanabsge  26415  cosne0  26438  cos0pilt1  26441  tanord  26447  tanregt0  26448  argimlt0  26522  logneg2  26524  divlogrlim  26544  logno1  26545  logcnlem3  26553  dvloglem  26557  logf1o2  26559  loglesqrt  26671  asinsin  26802  acoscos  26803  atanlogaddlem  26823  atanlogsub  26826  atantan  26833  atanbndlem  26835  scvxcvx  26896  lgamgulmlem2  26940  basellem8  26998  vmalogdivsum2  27449  vmalogdivsum  27450  2vmadivsumlem  27451  chpdifbndlem1  27464  selberg3lem1  27468  selberg3  27470  selberg4lem1  27471  selberg4  27472  selberg3r  27480  selberg4r  27481  selberg34r  27482  pntrlog2bndlem1  27488  pntrlog2bndlem2  27489  pntrlog2bndlem3  27490  pntrlog2bndlem4  27491  pntrlog2bndlem5  27492  pntrlog2bndlem6a  27493  pntrlog2bndlem6  27494  pntrlog2bnd  27495  pntpbnd1a  27496  pntpbnd1  27497  pntpbnd2  27498  pntpbnd  27499  pntibndlem2  27502  pntibndlem3  27503  pntibnd  27504  pntlemd  27505  pntlemb  27508  pntlemr  27513  pnt  27525  padicabv  27541  xrge0tsmsd  33002  fct2relem  34588  logdivsqrle  34641  knoppndvlem3  36502  iooelexlt  37350  relowlssretop  37351  poimir  37647  itg2gt0cn  37669  ftc1cnnclem  37685  aks4d1p1p5  42063  radcnvrat  44303  cncfiooicclem1  45891  itgioocnicc  45975  iblcncfioo  45976  amgmwlem  49791
  Copyright terms: Public domain W3C validator