| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version | ||
| Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr 13365 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
| 2 | elioo2 13347 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| 5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5107 (class class class)co 7387 ℝcr 11067 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ioo 13310 |
| This theorem is referenced by: elioo4g 13367 iccssioo2 13380 qdensere 24657 zcld 24702 reconnlem2 24716 xrge0tsms 24723 ovolioo 25469 ioorcl2 25473 itgsplitioo 25739 dvferm1lem 25888 dvferm2lem 25890 dvferm 25892 dvlt0 25910 dvivthlem1 25913 lhop1lem 25918 lhop1 25919 lhop2 25920 dvcvx 25925 ftc1lem4 25946 itgsubstlem 25955 itgsubst 25956 pilem2 26362 pilem3 26363 pigt2lt4 26364 tangtx 26414 tanabsge 26415 cosne0 26438 cos0pilt1 26441 tanord 26447 tanregt0 26448 argimlt0 26522 logneg2 26524 divlogrlim 26544 logno1 26545 logcnlem3 26553 dvloglem 26557 logf1o2 26559 loglesqrt 26671 asinsin 26802 acoscos 26803 atanlogaddlem 26823 atanlogsub 26826 atantan 26833 atanbndlem 26835 scvxcvx 26896 lgamgulmlem2 26940 basellem8 26998 vmalogdivsum2 27449 vmalogdivsum 27450 2vmadivsumlem 27451 chpdifbndlem1 27464 selberg3lem1 27468 selberg3 27470 selberg4lem1 27471 selberg4 27472 selberg3r 27480 selberg4r 27481 selberg34r 27482 pntrlog2bndlem1 27488 pntrlog2bndlem2 27489 pntrlog2bndlem3 27490 pntrlog2bndlem4 27491 pntrlog2bndlem5 27492 pntrlog2bndlem6a 27493 pntrlog2bndlem6 27494 pntrlog2bnd 27495 pntpbnd1a 27496 pntpbnd1 27497 pntpbnd2 27498 pntpbnd 27499 pntibndlem2 27502 pntibndlem3 27503 pntibnd 27504 pntlemd 27505 pntlemb 27508 pntlemr 27513 pnt 27525 padicabv 27541 xrge0tsmsd 33002 fct2relem 34588 logdivsqrle 34641 knoppndvlem3 36502 iooelexlt 37350 relowlssretop 37351 poimir 37647 itg2gt0cn 37669 ftc1cnnclem 37685 aks4d1p1p5 42063 radcnvrat 44303 cncfiooicclem1 45891 itgioocnicc 45975 iblcncfioo 45976 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |