| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version | ||
| Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr 13341 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
| 2 | elioo2 13323 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| 5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5102 (class class class)co 7369 ℝcr 11043 ℝ*cxr 11183 < clt 11184 (,)cioo 13282 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-pre-lttri 11118 ax-pre-lttrn 11119 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-ioo 13286 |
| This theorem is referenced by: elioo4g 13343 iccssioo2 13356 qdensere 24690 zcld 24735 reconnlem2 24749 xrge0tsms 24756 ovolioo 25502 ioorcl2 25506 itgsplitioo 25772 dvferm1lem 25921 dvferm2lem 25923 dvferm 25925 dvlt0 25943 dvivthlem1 25946 lhop1lem 25951 lhop1 25952 lhop2 25953 dvcvx 25958 ftc1lem4 25979 itgsubstlem 25988 itgsubst 25989 pilem2 26395 pilem3 26396 pigt2lt4 26397 tangtx 26447 tanabsge 26448 cosne0 26471 cos0pilt1 26474 tanord 26480 tanregt0 26481 argimlt0 26555 logneg2 26557 divlogrlim 26577 logno1 26578 logcnlem3 26586 dvloglem 26590 logf1o2 26592 loglesqrt 26704 asinsin 26835 acoscos 26836 atanlogaddlem 26856 atanlogsub 26859 atantan 26866 atanbndlem 26868 scvxcvx 26929 lgamgulmlem2 26973 basellem8 27031 vmalogdivsum2 27482 vmalogdivsum 27483 2vmadivsumlem 27484 chpdifbndlem1 27497 selberg3lem1 27501 selberg3 27503 selberg4lem1 27504 selberg4 27505 selberg3r 27513 selberg4r 27514 selberg34r 27515 pntrlog2bndlem1 27521 pntrlog2bndlem2 27522 pntrlog2bndlem3 27523 pntrlog2bndlem4 27524 pntrlog2bndlem5 27525 pntrlog2bndlem6a 27526 pntrlog2bndlem6 27527 pntrlog2bnd 27528 pntpbnd1a 27529 pntpbnd1 27530 pntpbnd2 27531 pntpbnd 27532 pntibndlem2 27535 pntibndlem3 27536 pntibnd 27537 pntlemd 27538 pntlemb 27541 pntlemr 27546 pnt 27558 padicabv 27574 xrge0tsmsd 33045 fct2relem 34581 logdivsqrle 34634 knoppndvlem3 36495 iooelexlt 37343 relowlssretop 37344 poimir 37640 itg2gt0cn 37662 ftc1cnnclem 37678 aks4d1p1p5 42056 radcnvrat 44296 cncfiooicclem1 45884 itgioocnicc 45968 iblcncfioo 45969 amgmwlem 49784 |
| Copyright terms: Public domain | W3C validator |