MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliooord Structured version   Visualization version   GIF version

Theorem eliooord 13308
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.)
Assertion
Ref Expression
eliooord (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))

Proof of Theorem eliooord
StepHypRef Expression
1 eliooxr 13307 . . . 4 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ*𝐶 ∈ ℝ*))
2 elioo2 13289 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
31, 2syl 17 . . 3 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶)))
43ibi 267 . 2 (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶))
5 3simpc 1150 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴𝐴 < 𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
64, 5syl 17 1 (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2109   class class class wbr 5092  (class class class)co 7349  cr 11008  *cxr 11148   < clt 11149  (,)cioo 13248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-pre-lttri 11083  ax-pre-lttrn 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-ioo 13252
This theorem is referenced by:  elioo4g  13309  iccssioo2  13322  qdensere  24655  zcld  24700  reconnlem2  24714  xrge0tsms  24721  ovolioo  25467  ioorcl2  25471  itgsplitioo  25737  dvferm1lem  25886  dvferm2lem  25888  dvferm  25890  dvlt0  25908  dvivthlem1  25911  lhop1lem  25916  lhop1  25917  lhop2  25918  dvcvx  25923  ftc1lem4  25944  itgsubstlem  25953  itgsubst  25954  pilem2  26360  pilem3  26361  pigt2lt4  26362  tangtx  26412  tanabsge  26413  cosne0  26436  cos0pilt1  26439  tanord  26445  tanregt0  26446  argimlt0  26520  logneg2  26522  divlogrlim  26542  logno1  26543  logcnlem3  26551  dvloglem  26555  logf1o2  26557  loglesqrt  26669  asinsin  26800  acoscos  26801  atanlogaddlem  26821  atanlogsub  26824  atantan  26831  atanbndlem  26833  scvxcvx  26894  lgamgulmlem2  26938  basellem8  26996  vmalogdivsum2  27447  vmalogdivsum  27448  2vmadivsumlem  27449  chpdifbndlem1  27462  selberg3lem1  27466  selberg3  27468  selberg4lem1  27469  selberg4  27470  selberg3r  27478  selberg4r  27479  selberg34r  27480  pntrlog2bndlem1  27486  pntrlog2bndlem2  27487  pntrlog2bndlem3  27488  pntrlog2bndlem4  27489  pntrlog2bndlem5  27490  pntrlog2bndlem6a  27491  pntrlog2bndlem6  27492  pntrlog2bnd  27493  pntpbnd1a  27494  pntpbnd1  27495  pntpbnd2  27496  pntpbnd  27497  pntibndlem2  27500  pntibndlem3  27501  pntibnd  27502  pntlemd  27503  pntlemb  27506  pntlemr  27511  pnt  27523  padicabv  27539  xrge0tsmsd  33024  fct2relem  34581  logdivsqrle  34634  knoppndvlem3  36508  iooelexlt  37356  relowlssretop  37357  poimir  37653  itg2gt0cn  37675  ftc1cnnclem  37691  aks4d1p1p5  42068  radcnvrat  44307  cncfiooicclem1  45894  itgioocnicc  45978  iblcncfioo  45979  amgmwlem  49807
  Copyright terms: Public domain W3C validator