| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version | ||
| Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr 13372 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
| 2 | elioo2 13354 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| 5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 ℝcr 11074 ℝ*cxr 11214 < clt 11215 (,)cioo 13313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-pre-lttri 11149 ax-pre-lttrn 11150 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-ioo 13317 |
| This theorem is referenced by: elioo4g 13374 iccssioo2 13387 qdensere 24664 zcld 24709 reconnlem2 24723 xrge0tsms 24730 ovolioo 25476 ioorcl2 25480 itgsplitioo 25746 dvferm1lem 25895 dvferm2lem 25897 dvferm 25899 dvlt0 25917 dvivthlem1 25920 lhop1lem 25925 lhop1 25926 lhop2 25927 dvcvx 25932 ftc1lem4 25953 itgsubstlem 25962 itgsubst 25963 pilem2 26369 pilem3 26370 pigt2lt4 26371 tangtx 26421 tanabsge 26422 cosne0 26445 cos0pilt1 26448 tanord 26454 tanregt0 26455 argimlt0 26529 logneg2 26531 divlogrlim 26551 logno1 26552 logcnlem3 26560 dvloglem 26564 logf1o2 26566 loglesqrt 26678 asinsin 26809 acoscos 26810 atanlogaddlem 26830 atanlogsub 26833 atantan 26840 atanbndlem 26842 scvxcvx 26903 lgamgulmlem2 26947 basellem8 27005 vmalogdivsum2 27456 vmalogdivsum 27457 2vmadivsumlem 27458 chpdifbndlem1 27471 selberg3lem1 27475 selberg3 27477 selberg4lem1 27478 selberg4 27479 selberg3r 27487 selberg4r 27488 selberg34r 27489 pntrlog2bndlem1 27495 pntrlog2bndlem2 27496 pntrlog2bndlem3 27497 pntrlog2bndlem4 27498 pntrlog2bndlem5 27499 pntrlog2bndlem6a 27500 pntrlog2bndlem6 27501 pntrlog2bnd 27502 pntpbnd1a 27503 pntpbnd1 27504 pntpbnd2 27505 pntpbnd 27506 pntibndlem2 27509 pntibndlem3 27510 pntibnd 27511 pntlemd 27512 pntlemb 27515 pntlemr 27520 pnt 27532 padicabv 27548 xrge0tsmsd 33009 fct2relem 34595 logdivsqrle 34648 knoppndvlem3 36509 iooelexlt 37357 relowlssretop 37358 poimir 37654 itg2gt0cn 37676 ftc1cnnclem 37692 aks4d1p1p5 42070 radcnvrat 44310 cncfiooicclem1 45898 itgioocnicc 45982 iblcncfioo 45983 amgmwlem 49795 |
| Copyright terms: Public domain | W3C validator |