| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version | ||
| Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr 13419 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
| 2 | elioo2 13401 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| 5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2108 class class class wbr 5119 (class class class)co 7403 ℝcr 11126 ℝ*cxr 11266 < clt 11267 (,)cioo 13360 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-pre-lttri 11201 ax-pre-lttrn 11202 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-po 5561 df-so 5562 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-ov 7406 df-oprab 7407 df-mpo 7408 df-1st 7986 df-2nd 7987 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-ioo 13364 |
| This theorem is referenced by: elioo4g 13421 iccssioo2 13434 qdensere 24706 zcld 24751 reconnlem2 24765 xrge0tsms 24772 ovolioo 25519 ioorcl2 25523 itgsplitioo 25789 dvferm1lem 25938 dvferm2lem 25940 dvferm 25942 dvlt0 25960 dvivthlem1 25963 lhop1lem 25968 lhop1 25969 lhop2 25970 dvcvx 25975 ftc1lem4 25996 itgsubstlem 26005 itgsubst 26006 pilem2 26412 pilem3 26413 pigt2lt4 26414 tangtx 26464 tanabsge 26465 cosne0 26488 cos0pilt1 26491 tanord 26497 tanregt0 26498 argimlt0 26572 logneg2 26574 divlogrlim 26594 logno1 26595 logcnlem3 26603 dvloglem 26607 logf1o2 26609 loglesqrt 26721 asinsin 26852 acoscos 26853 atanlogaddlem 26873 atanlogsub 26876 atantan 26883 atanbndlem 26885 scvxcvx 26946 lgamgulmlem2 26990 basellem8 27048 vmalogdivsum2 27499 vmalogdivsum 27500 2vmadivsumlem 27501 chpdifbndlem1 27514 selberg3lem1 27518 selberg3 27520 selberg4lem1 27521 selberg4 27522 selberg3r 27530 selberg4r 27531 selberg34r 27532 pntrlog2bndlem1 27538 pntrlog2bndlem2 27539 pntrlog2bndlem3 27540 pntrlog2bndlem4 27541 pntrlog2bndlem5 27542 pntrlog2bndlem6a 27543 pntrlog2bndlem6 27544 pntrlog2bnd 27545 pntpbnd1a 27546 pntpbnd1 27547 pntpbnd2 27548 pntpbnd 27549 pntibndlem2 27552 pntibndlem3 27553 pntibnd 27554 pntlemd 27555 pntlemb 27558 pntlemr 27563 pnt 27575 padicabv 27591 xrge0tsmsd 33002 fct2relem 34575 logdivsqrle 34628 knoppndvlem3 36478 iooelexlt 37326 relowlssretop 37327 poimir 37623 itg2gt0cn 37645 ftc1cnnclem 37661 aks4d1p1p5 42034 radcnvrat 44286 cncfiooicclem1 45870 itgioocnicc 45954 iblcncfioo 45955 amgmwlem 49614 |
| Copyright terms: Public domain | W3C validator |