| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version | ||
| Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
| Ref | Expression |
|---|---|
| eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliooxr 13304 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
| 2 | elioo2 13286 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
| 4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| 5 | 3simpc 1150 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
| 6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 class class class wbr 5089 (class class class)co 7346 ℝcr 11005 ℝ*cxr 11145 < clt 11146 (,)cioo 13245 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-po 5522 df-so 5523 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-ioo 13249 |
| This theorem is referenced by: elioo4g 13306 iccssioo2 13319 qdensere 24684 zcld 24729 reconnlem2 24743 xrge0tsms 24750 ovolioo 25496 ioorcl2 25500 itgsplitioo 25766 dvferm1lem 25915 dvferm2lem 25917 dvferm 25919 dvlt0 25937 dvivthlem1 25940 lhop1lem 25945 lhop1 25946 lhop2 25947 dvcvx 25952 ftc1lem4 25973 itgsubstlem 25982 itgsubst 25983 pilem2 26389 pilem3 26390 pigt2lt4 26391 tangtx 26441 tanabsge 26442 cosne0 26465 cos0pilt1 26468 tanord 26474 tanregt0 26475 argimlt0 26549 logneg2 26551 divlogrlim 26571 logno1 26572 logcnlem3 26580 dvloglem 26584 logf1o2 26586 loglesqrt 26698 asinsin 26829 acoscos 26830 atanlogaddlem 26850 atanlogsub 26853 atantan 26860 atanbndlem 26862 scvxcvx 26923 lgamgulmlem2 26967 basellem8 27025 vmalogdivsum2 27476 vmalogdivsum 27477 2vmadivsumlem 27478 chpdifbndlem1 27491 selberg3lem1 27495 selberg3 27497 selberg4lem1 27498 selberg4 27499 selberg3r 27507 selberg4r 27508 selberg34r 27509 pntrlog2bndlem1 27515 pntrlog2bndlem2 27516 pntrlog2bndlem3 27517 pntrlog2bndlem4 27518 pntrlog2bndlem5 27519 pntrlog2bndlem6a 27520 pntrlog2bndlem6 27521 pntrlog2bnd 27522 pntpbnd1a 27523 pntpbnd1 27524 pntpbnd2 27525 pntpbnd 27526 pntibndlem2 27529 pntibndlem3 27530 pntibnd 27531 pntlemd 27532 pntlemb 27535 pntlemr 27540 pnt 27552 padicabv 27568 xrge0tsmsd 33042 fct2relem 34610 logdivsqrle 34663 knoppndvlem3 36558 iooelexlt 37406 relowlssretop 37407 poimir 37692 itg2gt0cn 37714 ftc1cnnclem 37730 aks4d1p1p5 42167 radcnvrat 44406 cncfiooicclem1 45990 itgioocnicc 46074 iblcncfioo 46075 amgmwlem 49902 |
| Copyright terms: Public domain | W3C validator |