Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version |
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliooxr 13137 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
2 | elioo2 13120 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
4 | 3 | ibi 266 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
5 | 3simpc 1149 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 class class class wbr 5074 (class class class)co 7275 ℝcr 10870 ℝ*cxr 11008 < clt 11009 (,)cioo 13079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-pre-lttri 10945 ax-pre-lttrn 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-ioo 13083 |
This theorem is referenced by: elioo4g 13139 iccssioo2 13152 qdensere 23933 zcld 23976 reconnlem2 23990 xrge0tsms 23997 ovolioo 24732 ioorcl2 24736 itgsplitioo 25002 dvferm1lem 25148 dvferm2lem 25150 dvferm 25152 dvlt0 25169 dvivthlem1 25172 lhop1lem 25177 lhop1 25178 lhop2 25179 dvcvx 25184 ftc1lem4 25203 itgsubstlem 25212 itgsubst 25213 pilem2 25611 pilem3 25612 pigt2lt4 25613 tangtx 25662 tanabsge 25663 cosne0 25685 cos0pilt1 25688 tanord 25694 tanregt0 25695 argimlt0 25768 logneg2 25770 divlogrlim 25790 logno1 25791 logcnlem3 25799 dvloglem 25803 logf1o2 25805 loglesqrt 25911 asinsin 26042 acoscos 26043 atanlogaddlem 26063 atanlogsub 26066 atantan 26073 atanbndlem 26075 scvxcvx 26135 lgamgulmlem2 26179 basellem8 26237 vmalogdivsum2 26686 vmalogdivsum 26687 2vmadivsumlem 26688 chpdifbndlem1 26701 selberg3lem1 26705 selberg3 26707 selberg4lem1 26708 selberg4 26709 selberg3r 26717 selberg4r 26718 selberg34r 26719 pntrlog2bndlem1 26725 pntrlog2bndlem2 26726 pntrlog2bndlem3 26727 pntrlog2bndlem4 26728 pntrlog2bndlem5 26729 pntrlog2bndlem6a 26730 pntrlog2bndlem6 26731 pntrlog2bnd 26732 pntpbnd1a 26733 pntpbnd1 26734 pntpbnd2 26735 pntpbnd 26736 pntibndlem2 26739 pntibndlem3 26740 pntibnd 26741 pntlemd 26742 pntlemb 26745 pntlemr 26750 pnt 26762 padicabv 26778 xrge0tsmsd 31317 fct2relem 32577 logdivsqrle 32630 knoppndvlem3 34694 iooelexlt 35533 relowlssretop 35534 poimir 35810 itg2gt0cn 35832 ftc1cnnclem 35848 aks4d1p1p5 40083 radcnvrat 41932 cncfiooicclem1 43434 itgioocnicc 43518 iblcncfioo 43519 amgmwlem 46506 |
Copyright terms: Public domain | W3C validator |