![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliooord | Structured version Visualization version GIF version |
Description: Ordering implied by a member of an open interval of reals. (Contributed by NM, 17-Aug-2008.) (Revised by Mario Carneiro, 9-May-2014.) |
Ref | Expression |
---|---|
eliooord | ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliooxr 13441 | . . . 4 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*)) | |
2 | elioo2 13424 | . . . 4 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ (𝐵(,)𝐶) ↔ (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶))) |
4 | 3 | ibi 267 | . 2 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
5 | 3simpc 1149 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 < 𝐴 ∧ 𝐴 < 𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) | |
6 | 4, 5 | syl 17 | 1 ⊢ (𝐴 ∈ (𝐵(,)𝐶) → (𝐵 < 𝐴 ∧ 𝐴 < 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2105 class class class wbr 5147 (class class class)co 7430 ℝcr 11151 ℝ*cxr 11291 < clt 11292 (,)cioo 13383 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-pre-lttri 11226 ax-pre-lttrn 11227 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-po 5596 df-so 5597 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-1st 8012 df-2nd 8013 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-ioo 13387 |
This theorem is referenced by: elioo4g 13443 iccssioo2 13456 qdensere 24805 zcld 24848 reconnlem2 24862 xrge0tsms 24869 ovolioo 25616 ioorcl2 25620 itgsplitioo 25887 dvferm1lem 26036 dvferm2lem 26038 dvferm 26040 dvlt0 26058 dvivthlem1 26061 lhop1lem 26066 lhop1 26067 lhop2 26068 dvcvx 26073 ftc1lem4 26094 itgsubstlem 26103 itgsubst 26104 pilem2 26510 pilem3 26511 pigt2lt4 26512 tangtx 26561 tanabsge 26562 cosne0 26585 cos0pilt1 26588 tanord 26594 tanregt0 26595 argimlt0 26669 logneg2 26671 divlogrlim 26691 logno1 26692 logcnlem3 26700 dvloglem 26704 logf1o2 26706 loglesqrt 26818 asinsin 26949 acoscos 26950 atanlogaddlem 26970 atanlogsub 26973 atantan 26980 atanbndlem 26982 scvxcvx 27043 lgamgulmlem2 27087 basellem8 27145 vmalogdivsum2 27596 vmalogdivsum 27597 2vmadivsumlem 27598 chpdifbndlem1 27611 selberg3lem1 27615 selberg3 27617 selberg4lem1 27618 selberg4 27619 selberg3r 27627 selberg4r 27628 selberg34r 27629 pntrlog2bndlem1 27635 pntrlog2bndlem2 27636 pntrlog2bndlem3 27637 pntrlog2bndlem4 27638 pntrlog2bndlem5 27639 pntrlog2bndlem6a 27640 pntrlog2bndlem6 27641 pntrlog2bnd 27642 pntpbnd1a 27643 pntpbnd1 27644 pntpbnd2 27645 pntpbnd 27646 pntibndlem2 27649 pntibndlem3 27650 pntibnd 27651 pntlemd 27652 pntlemb 27655 pntlemr 27660 pnt 27672 padicabv 27688 xrge0tsmsd 33047 fct2relem 34590 logdivsqrle 34643 knoppndvlem3 36496 iooelexlt 37344 relowlssretop 37345 poimir 37639 itg2gt0cn 37661 ftc1cnnclem 37677 aks4d1p1p5 42056 radcnvrat 44309 cncfiooicclem1 45848 itgioocnicc 45932 iblcncfioo 45933 amgmwlem 49032 |
Copyright terms: Public domain | W3C validator |