![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpaddatiN | Structured version Visualization version GIF version |
Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
paddfval.l | β’ β€ = (leβπΎ) |
paddfval.j | β’ β¨ = (joinβπΎ) |
paddfval.a | β’ π΄ = (AtomsβπΎ) |
paddfval.p | β’ + = (+πβπΎ) |
Ref | Expression |
---|---|
elpaddatiN | β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β β β§ π β (π + {π}))) β βπ β π π β€ (π β¨ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | paddfval.l | . . . 4 β’ β€ = (leβπΎ) | |
2 | paddfval.j | . . . 4 β’ β¨ = (joinβπΎ) | |
3 | paddfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
4 | paddfval.p | . . . 4 β’ + = (+πβπΎ) | |
5 | 1, 2, 3, 4 | elpaddat 38978 | . . 3 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ π β β ) β (π β (π + {π}) β (π β π΄ β§ βπ β π π β€ (π β¨ π)))) |
6 | simpr 483 | . . 3 β’ ((π β π΄ β§ βπ β π π β€ (π β¨ π)) β βπ β π π β€ (π β¨ π)) | |
7 | 5, 6 | syl6bi 252 | . 2 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ π β β ) β (π β (π + {π}) β βπ β π π β€ (π β¨ π))) |
8 | 7 | impr 453 | 1 β’ (((πΎ β Lat β§ π β π΄ β§ π β π΄) β§ (π β β β§ π β (π + {π}))) β βπ β π π β€ (π β¨ π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 β wcel 2104 β wne 2938 βwrex 3068 β wss 3947 β c0 4321 {csn 4627 class class class wbr 5147 βcfv 6542 (class class class)co 7411 lecple 17208 joincjn 18268 Latclat 18388 Atomscatm 38436 +πcpadd 38969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-lub 18303 df-join 18305 df-lat 18389 df-ats 38440 df-padd 38970 |
This theorem is referenced by: osumcllem7N 39136 pexmidlem4N 39147 |
Copyright terms: Public domain | W3C validator |