Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpaddatiN Structured version   Visualization version   GIF version

Theorem elpaddatiN 39788
Description: Consequence of membership in a projective subspace sum with a point. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddfval.l = (le‘𝐾)
paddfval.j = (join‘𝐾)
paddfval.a 𝐴 = (Atoms‘𝐾)
paddfval.p + = (+𝑃𝐾)
Assertion
Ref Expression
elpaddatiN (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑅 ∈ (𝑋 + {𝑄}))) → ∃𝑝𝑋 𝑅 (𝑝 𝑄))
Distinct variable groups:   𝐴,𝑝   𝐾,𝑝   𝑋,𝑝   ,𝑝   ,𝑝   𝑄,𝑝   𝑅,𝑝
Allowed substitution hint:   + (𝑝)

Proof of Theorem elpaddatiN
StepHypRef Expression
1 paddfval.l . . . 4 = (le‘𝐾)
2 paddfval.j . . . 4 = (join‘𝐾)
3 paddfval.a . . . 4 𝐴 = (Atoms‘𝐾)
4 paddfval.p . . . 4 + = (+𝑃𝐾)
51, 2, 3, 4elpaddat 39787 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑅 ∈ (𝑋 + {𝑄}) ↔ (𝑅𝐴 ∧ ∃𝑝𝑋 𝑅 (𝑝 𝑄))))
6 simpr 484 . . 3 ((𝑅𝐴 ∧ ∃𝑝𝑋 𝑅 (𝑝 𝑄)) → ∃𝑝𝑋 𝑅 (𝑝 𝑄))
75, 6biimtrdi 253 . 2 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ 𝑋 ≠ ∅) → (𝑅 ∈ (𝑋 + {𝑄}) → ∃𝑝𝑋 𝑅 (𝑝 𝑄)))
87impr 454 1 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑅 ∈ (𝑋 + {𝑄}))) → ∃𝑝𝑋 𝑅 (𝑝 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  wss 3963  c0 4339  {csn 4631   class class class wbr 5148  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  Latclat 18489  Atomscatm 39245  +𝑃cpadd 39778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-lub 18404  df-join 18406  df-lat 18490  df-ats 39249  df-padd 39779
This theorem is referenced by:  osumcllem7N  39945  pexmidlem4N  39956
  Copyright terms: Public domain W3C validator