Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem4N Structured version   Visualization version   GIF version

Theorem pexmidlem4N 37914
Description: Lemma for pexmidN 37910. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem4N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   𝑀,𝑞   ,𝑞   + ,𝑞   𝑋,𝑞   𝑞,𝑝
Allowed substitution hints:   𝐴(𝑝)   + (𝑝)   (𝑞,𝑝)   𝐾(𝑝)   (𝑞,𝑝)   𝑀(𝑝)   (𝑝)   𝑋(𝑝)

Proof of Theorem pexmidlem4N
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1189 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝐾 ∈ HL)
21hllatd 37305 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝐾 ∈ Lat)
3 simpl2 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑋𝐴)
4 simpl3 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝𝐴)
5 simprl 767 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑋 ≠ ∅)
6 inss2 4160 . . . . . 6 (( 𝑋) ∩ 𝑀) ⊆ 𝑀
76sseli 3913 . . . . 5 (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑞𝑀)
8 pexmidlem.m . . . . 5 𝑀 = (𝑋 + {𝑝})
97, 8eleqtrdi 2849 . . . 4 (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑞 ∈ (𝑋 + {𝑝}))
109ad2antll 725 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑞 ∈ (𝑋 + {𝑝}))
11 pexmidlem.l . . . 4 = (le‘𝐾)
12 pexmidlem.j . . . 4 = (join‘𝐾)
13 pexmidlem.a . . . 4 𝐴 = (Atoms‘𝐾)
14 pexmidlem.p . . . 4 + = (+𝑃𝐾)
1511, 12, 13, 14elpaddatiN 37746 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
162, 3, 4, 5, 10, 15syl32anc 1376 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
17 simp1 1134 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴))
18 simp3l 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑟𝑋)
19 inss1 4159 . . . . . . 7 (( 𝑋) ∩ 𝑀) ⊆ ( 𝑋)
20 simp2r 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 ∈ (( 𝑋) ∩ 𝑀))
2119, 20sselid 3915 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 ∈ ( 𝑋))
22 simp3r 1200 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 (𝑟 𝑝))
23 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
2411, 12, 13, 14, 23, 8pexmidlem3N 37913 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))
2517, 18, 21, 22, 24syl121anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
26253expia 1119 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → ((𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋))))
2726expd 415 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → (𝑟𝑋 → (𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + ( 𝑋)))))
2827rexlimdv 3211 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → (∃𝑟𝑋 𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + ( 𝑋))))
2916, 28mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  cin 3882  wss 3883  c0 4253  {csn 4558   class class class wbr 5070  cfv 6418  (class class class)co 7255  lecple 16895  joincjn 17944  Latclat 18064  Atomscatm 37204  HLchlt 37291  +𝑃cpadd 37736  𝑃cpolN 37843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-riotaBAD 36894
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-undef 8060  df-proset 17928  df-poset 17946  df-plt 17963  df-lub 17979  df-glb 17980  df-join 17981  df-meet 17982  df-p0 18058  df-p1 18059  df-lat 18065  df-clat 18132  df-oposet 37117  df-ol 37119  df-oml 37120  df-covers 37207  df-ats 37208  df-atl 37239  df-cvlat 37263  df-hlat 37292  df-psubsp 37444  df-pmap 37445  df-padd 37737  df-polarityN 37844
This theorem is referenced by:  pexmidlem5N  37915
  Copyright terms: Public domain W3C validator