Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem4N Structured version   Visualization version   GIF version

Theorem pexmidlem4N 39672
Description: Lemma for pexmidN 39668. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem4N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   𝑀,𝑞   ,𝑞   + ,𝑞   𝑋,𝑞   𝑞,𝑝
Allowed substitution hints:   𝐴(𝑝)   + (𝑝)   (𝑞,𝑝)   𝐾(𝑝)   (𝑞,𝑝)   𝑀(𝑝)   (𝑝)   𝑋(𝑝)

Proof of Theorem pexmidlem4N
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝐾 ∈ HL)
21hllatd 39062 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝐾 ∈ Lat)
3 simpl2 1189 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑋𝐴)
4 simpl3 1190 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝𝐴)
5 simprl 769 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑋 ≠ ∅)
6 inss2 4231 . . . . . 6 (( 𝑋) ∩ 𝑀) ⊆ 𝑀
76sseli 3975 . . . . 5 (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑞𝑀)
8 pexmidlem.m . . . . 5 𝑀 = (𝑋 + {𝑝})
97, 8eleqtrdi 2836 . . . 4 (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑞 ∈ (𝑋 + {𝑝}))
109ad2antll 727 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑞 ∈ (𝑋 + {𝑝}))
11 pexmidlem.l . . . 4 = (le‘𝐾)
12 pexmidlem.j . . . 4 = (join‘𝐾)
13 pexmidlem.a . . . 4 𝐴 = (Atoms‘𝐾)
14 pexmidlem.p . . . 4 + = (+𝑃𝐾)
1511, 12, 13, 14elpaddatiN 39504 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
162, 3, 4, 5, 10, 15syl32anc 1375 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
17 simp1 1133 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴))
18 simp3l 1198 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑟𝑋)
19 inss1 4230 . . . . . . 7 (( 𝑋) ∩ 𝑀) ⊆ ( 𝑋)
20 simp2r 1197 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 ∈ (( 𝑋) ∩ 𝑀))
2119, 20sselid 3977 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 ∈ ( 𝑋))
22 simp3r 1199 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 (𝑟 𝑝))
23 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
2411, 12, 13, 14, 23, 8pexmidlem3N 39671 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))
2517, 18, 21, 22, 24syl121anc 1372 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
26253expia 1118 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → ((𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋))))
2726expd 414 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → (𝑟𝑋 → (𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + ( 𝑋)))))
2827rexlimdv 3143 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → (∃𝑟𝑋 𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + ( 𝑋))))
2916, 28mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wne 2930  wrex 3060  cin 3946  wss 3947  c0 4325  {csn 4633   class class class wbr 5153  cfv 6554  (class class class)co 7424  lecple 17273  joincjn 18336  Latclat 18456  Atomscatm 38961  HLchlt 39048  +𝑃cpadd 39494  𝑃cpolN 39601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-1st 8003  df-2nd 8004  df-proset 18320  df-poset 18338  df-plt 18355  df-lub 18371  df-glb 18372  df-join 18373  df-meet 18374  df-p0 18450  df-p1 18451  df-lat 18457  df-clat 18524  df-oposet 38874  df-ol 38876  df-oml 38877  df-covers 38964  df-ats 38965  df-atl 38996  df-cvlat 39020  df-hlat 39049  df-psubsp 39202  df-pmap 39203  df-padd 39495  df-polarityN 39602
This theorem is referenced by:  pexmidlem5N  39673
  Copyright terms: Public domain W3C validator