Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pexmidlem4N Structured version   Visualization version   GIF version

Theorem pexmidlem4N 39940
Description: Lemma for pexmidN 39936. (Contributed by NM, 2-Feb-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pexmidlem.l = (le‘𝐾)
pexmidlem.j = (join‘𝐾)
pexmidlem.a 𝐴 = (Atoms‘𝐾)
pexmidlem.p + = (+𝑃𝐾)
pexmidlem.o = (⊥𝑃𝐾)
pexmidlem.m 𝑀 = (𝑋 + {𝑝})
Assertion
Ref Expression
pexmidlem4N (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Distinct variable groups:   𝐴,𝑞   𝐾,𝑞   𝑀,𝑞   ,𝑞   + ,𝑞   𝑋,𝑞   𝑞,𝑝
Allowed substitution hints:   𝐴(𝑝)   + (𝑝)   (𝑞,𝑝)   𝐾(𝑝)   (𝑞,𝑝)   𝑀(𝑝)   (𝑝)   𝑋(𝑝)

Proof of Theorem pexmidlem4N
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝐾 ∈ HL)
21hllatd 39330 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝐾 ∈ Lat)
3 simpl2 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑋𝐴)
4 simpl3 1194 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝𝐴)
5 simprl 770 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑋 ≠ ∅)
6 inss2 4197 . . . . . 6 (( 𝑋) ∩ 𝑀) ⊆ 𝑀
76sseli 3939 . . . . 5 (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑞𝑀)
8 pexmidlem.m . . . . 5 𝑀 = (𝑋 + {𝑝})
97, 8eleqtrdi 2838 . . . 4 (𝑞 ∈ (( 𝑋) ∩ 𝑀) → 𝑞 ∈ (𝑋 + {𝑝}))
109ad2antll 729 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑞 ∈ (𝑋 + {𝑝}))
11 pexmidlem.l . . . 4 = (le‘𝐾)
12 pexmidlem.j . . . 4 = (join‘𝐾)
13 pexmidlem.a . . . 4 𝐴 = (Atoms‘𝐾)
14 pexmidlem.p . . . 4 + = (+𝑃𝐾)
1511, 12, 13, 14elpaddatiN 39772 . . 3 (((𝐾 ∈ Lat ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
162, 3, 4, 5, 10, 15syl32anc 1380 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → ∃𝑟𝑋 𝑞 (𝑟 𝑝))
17 simp1 1136 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → (𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴))
18 simp3l 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑟𝑋)
19 inss1 4196 . . . . . . 7 (( 𝑋) ∩ 𝑀) ⊆ ( 𝑋)
20 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 ∈ (( 𝑋) ∩ 𝑀))
2119, 20sselid 3941 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 ∈ ( 𝑋))
22 simp3r 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑞 (𝑟 𝑝))
23 pexmidlem.o . . . . . . 7 = (⊥𝑃𝐾)
2411, 12, 13, 14, 23, 8pexmidlem3N 39939 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑟𝑋𝑞 ∈ ( 𝑋)) ∧ 𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋)))
2517, 18, 21, 22, 24syl121anc 1377 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀)) ∧ (𝑟𝑋𝑞 (𝑟 𝑝))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
26253expia 1121 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → ((𝑟𝑋𝑞 (𝑟 𝑝)) → 𝑝 ∈ (𝑋 + ( 𝑋))))
2726expd 415 . . 3 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → (𝑟𝑋 → (𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + ( 𝑋)))))
2827rexlimdv 3132 . 2 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → (∃𝑟𝑋 𝑞 (𝑟 𝑝) → 𝑝 ∈ (𝑋 + ( 𝑋))))
2916, 28mpd 15 1 (((𝐾 ∈ HL ∧ 𝑋𝐴𝑝𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( 𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cin 3910  wss 3911  c0 4292  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  lecple 17203  joincjn 18248  Latclat 18366  Atomscatm 39229  HLchlt 39316  +𝑃cpadd 39762  𝑃cpolN 39869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-polarityN 39870
This theorem is referenced by:  pexmidlem5N  39941
  Copyright terms: Public domain W3C validator