Step | Hyp | Ref
| Expression |
1 | | simpl1 1190 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝐾 ∈ HL) |
2 | 1 | hllatd 37378 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝐾 ∈ Lat) |
3 | | simpl2 1191 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑋 ⊆ 𝐴) |
4 | | simpl3 1192 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ 𝐴) |
5 | | simprl 768 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑋 ≠ ∅) |
6 | | inss2 4163 |
. . . . . 6
⊢ (( ⊥
‘𝑋) ∩ 𝑀) ⊆ 𝑀 |
7 | 6 | sseli 3917 |
. . . . 5
⊢ (𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑞 ∈ 𝑀) |
8 | | pexmidlem.m |
. . . . 5
⊢ 𝑀 = (𝑋 + {𝑝}) |
9 | 7, 8 | eleqtrdi 2849 |
. . . 4
⊢ (𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀) → 𝑞 ∈ (𝑋 + {𝑝})) |
10 | 9 | ad2antll 726 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑞 ∈ (𝑋 + {𝑝})) |
11 | | pexmidlem.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
12 | | pexmidlem.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
13 | | pexmidlem.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
14 | | pexmidlem.p |
. . . 4
⊢ + =
(+𝑃‘𝐾) |
15 | 11, 12, 13, 14 | elpaddatiN 37819 |
. . 3
⊢ (((𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (𝑋 + {𝑝}))) → ∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝)) |
16 | 2, 3, 4, 5, 10, 15 | syl32anc 1377 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → ∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝)) |
17 | | simp1 1135 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → (𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴)) |
18 | | simp3l 1200 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑟 ∈ 𝑋) |
19 | | inss1 4162 |
. . . . . . 7
⊢ (( ⊥
‘𝑋) ∩ 𝑀) ⊆ ( ⊥ ‘𝑋) |
20 | | simp2r 1199 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) |
21 | 19, 20 | sselid 3919 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ∈ ( ⊥ ‘𝑋)) |
22 | | simp3r 1201 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑞 ≤ (𝑟 ∨ 𝑝)) |
23 | | pexmidlem.o |
. . . . . . 7
⊢ ⊥ =
(⊥𝑃‘𝐾) |
24 | 11, 12, 13, 14, 23, 8 | pexmidlem3N 37986 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘𝑋)) ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
25 | 17, 18, 21, 22, 24 | syl121anc 1374 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀)) ∧ (𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |
26 | 25 | 3expia 1120 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → ((𝑟 ∈ 𝑋 ∧ 𝑞 ≤ (𝑟 ∨ 𝑝)) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
27 | 26 | expd 416 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → (𝑟 ∈ 𝑋 → (𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))))) |
28 | 27 | rexlimdv 3212 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → (∃𝑟 ∈ 𝑋 𝑞 ≤ (𝑟 ∨ 𝑝) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋)))) |
29 | 16, 28 | mpd 15 |
1
⊢ (((𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴) ∧ (𝑋 ≠ ∅ ∧ 𝑞 ∈ (( ⊥ ‘𝑋) ∩ 𝑀))) → 𝑝 ∈ (𝑋 + ( ⊥ ‘𝑋))) |