| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemelr | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34406. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemelr | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4188 | . . . 4 ⊢ ((ℕ0 ↑m ℕ) ∩ 𝑅) ⊆ (ℕ0 ↑m ℕ) | |
| 2 | 1 | sseli 3927 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0 ↑m ℕ)) |
| 3 | elmapi 8782 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑m ℕ) → 𝐴:ℕ⟶ℕ0) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
| 5 | inss2 4189 | . . . 4 ⊢ ((ℕ0 ↑m ℕ) ∩ 𝑅) ⊆ 𝑅 | |
| 6 | 5 | sseli 3927 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴 ∈ 𝑅) |
| 7 | cnveq 5820 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
| 8 | 7 | imaeq1d 6015 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
| 9 | 8 | eleq1d 2818 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 10 | eulerpartlems.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | 9, 10 | elab2g 3633 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴 ∈ 𝑅 ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 12 | 6, 11 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ∈ Fin) |
| 13 | 4, 12 | jca 511 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∩ cin 3898 ↦ cmpt 5176 ◡ccnv 5620 “ cima 5624 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ↑m cmap 8759 Fincfn 8878 · cmul 11021 ℕcn 12135 ℕ0cn0 12391 Σcsu 15603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-1st 7930 df-2nd 7931 df-map 8761 |
| This theorem is referenced by: eulerpartlemsv2 34382 eulerpartlemsf 34383 eulerpartlems 34384 eulerpartlemsv3 34385 eulerpartlemgc 34386 |
| Copyright terms: Public domain | W3C validator |