| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemelr | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34380. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemelr | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4203 | . . . 4 ⊢ ((ℕ0 ↑m ℕ) ∩ 𝑅) ⊆ (ℕ0 ↑m ℕ) | |
| 2 | 1 | sseli 3945 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0 ↑m ℕ)) |
| 3 | elmapi 8825 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑m ℕ) → 𝐴:ℕ⟶ℕ0) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
| 5 | inss2 4204 | . . . 4 ⊢ ((ℕ0 ↑m ℕ) ∩ 𝑅) ⊆ 𝑅 | |
| 6 | 5 | sseli 3945 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴 ∈ 𝑅) |
| 7 | cnveq 5840 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
| 8 | 7 | imaeq1d 6033 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
| 9 | 8 | eleq1d 2814 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 10 | eulerpartlems.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | 9, 10 | elab2g 3650 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴 ∈ 𝑅 ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 12 | 6, 11 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ∈ Fin) |
| 13 | 4, 12 | jca 511 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∩ cin 3916 ↦ cmpt 5191 ◡ccnv 5640 “ cima 5644 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 Fincfn 8921 · cmul 11080 ℕcn 12193 ℕ0cn0 12449 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-map 8804 |
| This theorem is referenced by: eulerpartlemsv2 34356 eulerpartlemsf 34357 eulerpartlems 34358 eulerpartlemsv3 34359 eulerpartlemgc 34360 |
| Copyright terms: Public domain | W3C validator |