| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemelr | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34349. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemelr | ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 4190 | . . . 4 ⊢ ((ℕ0 ↑m ℕ) ∩ 𝑅) ⊆ (ℕ0 ↑m ℕ) | |
| 2 | 1 | sseli 3933 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0 ↑m ℕ)) |
| 3 | elmapi 8783 | . . 3 ⊢ (𝐴 ∈ (ℕ0 ↑m ℕ) → 𝐴:ℕ⟶ℕ0) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0) |
| 5 | inss2 4191 | . . . 4 ⊢ ((ℕ0 ↑m ℕ) ∩ 𝑅) ⊆ 𝑅 | |
| 6 | 5 | sseli 3933 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝐴 ∈ 𝑅) |
| 7 | cnveq 5820 | . . . . . 6 ⊢ (𝑓 = 𝐴 → ◡𝑓 = ◡𝐴) | |
| 8 | 7 | imaeq1d 6014 | . . . . 5 ⊢ (𝑓 = 𝐴 → (◡𝑓 “ ℕ) = (◡𝐴 “ ℕ)) |
| 9 | 8 | eleq1d 2813 | . . . 4 ⊢ (𝑓 = 𝐴 → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 10 | eulerpartlems.r | . . . 4 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 11 | 9, 10 | elab2g 3638 | . . 3 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴 ∈ 𝑅 ↔ (◡𝐴 “ ℕ) ∈ Fin)) |
| 12 | 6, 11 | mpbid 232 | . 2 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝐴 “ ℕ) ∈ Fin) |
| 13 | 4, 12 | jca 511 | 1 ⊢ (𝐴 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∩ cin 3904 ↦ cmpt 5176 ◡ccnv 5622 “ cima 5626 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 · cmul 11033 ℕcn 12146 ℕ0cn0 12402 Σcsu 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-map 8762 |
| This theorem is referenced by: eulerpartlemsv2 34325 eulerpartlemsf 34326 eulerpartlems 34327 eulerpartlemsv3 34328 eulerpartlemgc 34329 |
| Copyright terms: Public domain | W3C validator |