Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemelr Structured version   Visualization version   GIF version

Theorem eulerpartlemelr 34381
Description: Lemma for eulerpart 34406. (Contributed by Thierry Arnoux, 8-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemelr (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemelr
StepHypRef Expression
1 inss1 4188 . . . 4 ((ℕ0m ℕ) ∩ 𝑅) ⊆ (ℕ0m ℕ)
21sseli 3927 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0m ℕ))
3 elmapi 8782 . . 3 (𝐴 ∈ (ℕ0m ℕ) → 𝐴:ℕ⟶ℕ0)
42, 3syl 17 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
5 inss2 4189 . . . 4 ((ℕ0m ℕ) ∩ 𝑅) ⊆ 𝑅
65sseli 3927 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴𝑅)
7 cnveq 5820 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
87imaeq1d 6015 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
98eleq1d 2818 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
10 eulerpartlems.r . . . 4 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
119, 10elab2g 3633 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴𝑅 ↔ (𝐴 “ ℕ) ∈ Fin))
126, 11mpbid 232 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ∈ Fin)
134, 12jca 511 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  cin 3898  cmpt 5176  ccnv 5620  cima 5624  wf 6485  cfv 6489  (class class class)co 7355  m cmap 8759  Fincfn 8878   · cmul 11021  cn 12135  0cn0 12391  Σcsu 15603
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-map 8761
This theorem is referenced by:  eulerpartlemsv2  34382  eulerpartlemsf  34383  eulerpartlems  34384  eulerpartlemsv3  34385  eulerpartlemgc  34386
  Copyright terms: Public domain W3C validator