Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemelr Structured version   Visualization version   GIF version

Theorem eulerpartlemelr 32224
Description: Lemma for eulerpart 32249. (Contributed by Thierry Arnoux, 8-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemelr (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemelr
StepHypRef Expression
1 inss1 4159 . . . 4 ((ℕ0m ℕ) ∩ 𝑅) ⊆ (ℕ0m ℕ)
21sseli 3913 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0m ℕ))
3 elmapi 8595 . . 3 (𝐴 ∈ (ℕ0m ℕ) → 𝐴:ℕ⟶ℕ0)
42, 3syl 17 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
5 inss2 4160 . . . 4 ((ℕ0m ℕ) ∩ 𝑅) ⊆ 𝑅
65sseli 3913 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴𝑅)
7 cnveq 5771 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
87imaeq1d 5957 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
98eleq1d 2823 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
10 eulerpartlems.r . . . 4 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
119, 10elab2g 3604 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴𝑅 ↔ (𝐴 “ ℕ) ∈ Fin))
126, 11mpbid 231 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ∈ Fin)
134, 12jca 511 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {cab 2715  cin 3882  cmpt 5153  ccnv 5579  cima 5583  wf 6414  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691   · cmul 10807  cn 11903  0cn0 12163  Σcsu 15325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575
This theorem is referenced by:  eulerpartlemsv2  32225  eulerpartlemsf  32226  eulerpartlems  32227  eulerpartlemsv3  32228  eulerpartlemgc  32229
  Copyright terms: Public domain W3C validator