![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemelr | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 33870. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
Ref | Expression |
---|---|
eulerpartlems.r | β’ π = {π β£ (β‘π β β) β Fin} |
eulerpartlems.s | β’ π = (π β ((β0 βm β) β© π ) β¦ Ξ£π β β ((πβπ) Β· π)) |
Ref | Expression |
---|---|
eulerpartlemelr | β’ (π΄ β ((β0 βm β) β© π ) β (π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inss1 4220 | . . . 4 β’ ((β0 βm β) β© π ) β (β0 βm β) | |
2 | 1 | sseli 3970 | . . 3 β’ (π΄ β ((β0 βm β) β© π ) β π΄ β (β0 βm β)) |
3 | elmapi 8839 | . . 3 β’ (π΄ β (β0 βm β) β π΄:ββΆβ0) | |
4 | 2, 3 | syl 17 | . 2 β’ (π΄ β ((β0 βm β) β© π ) β π΄:ββΆβ0) |
5 | inss2 4221 | . . . 4 β’ ((β0 βm β) β© π ) β π | |
6 | 5 | sseli 3970 | . . 3 β’ (π΄ β ((β0 βm β) β© π ) β π΄ β π ) |
7 | cnveq 5863 | . . . . . 6 β’ (π = π΄ β β‘π = β‘π΄) | |
8 | 7 | imaeq1d 6048 | . . . . 5 β’ (π = π΄ β (β‘π β β) = (β‘π΄ β β)) |
9 | 8 | eleq1d 2810 | . . . 4 β’ (π = π΄ β ((β‘π β β) β Fin β (β‘π΄ β β) β Fin)) |
10 | eulerpartlems.r | . . . 4 β’ π = {π β£ (β‘π β β) β Fin} | |
11 | 9, 10 | elab2g 3662 | . . 3 β’ (π΄ β ((β0 βm β) β© π ) β (π΄ β π β (β‘π΄ β β) β Fin)) |
12 | 6, 11 | mpbid 231 | . 2 β’ (π΄ β ((β0 βm β) β© π ) β (β‘π΄ β β) β Fin) |
13 | 4, 12 | jca 511 | 1 β’ (π΄ β ((β0 βm β) β© π ) β (π΄:ββΆβ0 β§ (β‘π΄ β β) β Fin)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1533 β wcel 2098 {cab 2701 β© cin 3939 β¦ cmpt 5221 β‘ccnv 5665 β cima 5669 βΆwf 6529 βcfv 6533 (class class class)co 7401 βm cmap 8816 Fincfn 8935 Β· cmul 11111 βcn 12209 β0cn0 12469 Ξ£csu 15629 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-1st 7968 df-2nd 7969 df-map 8818 |
This theorem is referenced by: eulerpartlemsv2 33846 eulerpartlemsf 33847 eulerpartlems 33848 eulerpartlemsv3 33849 eulerpartlemgc 33850 |
Copyright terms: Public domain | W3C validator |