Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemelr Structured version   Visualization version   GIF version

Theorem eulerpartlemelr 34394
Description: Lemma for eulerpart 34419. (Contributed by Thierry Arnoux, 8-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemelr (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemelr
StepHypRef Expression
1 inss1 4217 . . . 4 ((ℕ0m ℕ) ∩ 𝑅) ⊆ (ℕ0m ℕ)
21sseli 3959 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴 ∈ (ℕ0m ℕ))
3 elmapi 8868 . . 3 (𝐴 ∈ (ℕ0m ℕ) → 𝐴:ℕ⟶ℕ0)
42, 3syl 17 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
5 inss2 4218 . . . 4 ((ℕ0m ℕ) ∩ 𝑅) ⊆ 𝑅
65sseli 3959 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴𝑅)
7 cnveq 5858 . . . . . 6 (𝑓 = 𝐴𝑓 = 𝐴)
87imaeq1d 6051 . . . . 5 (𝑓 = 𝐴 → (𝑓 “ ℕ) = (𝐴 “ ℕ))
98eleq1d 2820 . . . 4 (𝑓 = 𝐴 → ((𝑓 “ ℕ) ∈ Fin ↔ (𝐴 “ ℕ) ∈ Fin))
10 eulerpartlems.r . . . 4 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
119, 10elab2g 3664 . . 3 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴𝑅 ↔ (𝐴 “ ℕ) ∈ Fin))
126, 11mpbid 232 . 2 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴 “ ℕ) ∈ Fin)
134, 12jca 511 1 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  cin 3930  cmpt 5206  ccnv 5658  cima 5662  wf 6532  cfv 6536  (class class class)co 7410  m cmap 8845  Fincfn 8964   · cmul 11139  cn 12245  0cn0 12506  Σcsu 15707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-map 8847
This theorem is referenced by:  eulerpartlemsv2  34395  eulerpartlemsf  34396  eulerpartlems  34397  eulerpartlemsv3  34398  eulerpartlemgc  34399
  Copyright terms: Public domain W3C validator