Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgc Structured version   Visualization version   GIF version

Theorem eulerpartlemgc 34360
Description: Lemma for eulerpart 34380. (Contributed by Thierry Arnoux, 9-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemgc ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑡,𝑘,𝐴   𝑡,𝑅   𝑡,𝑆,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝑅(𝑛)   𝑆(𝑓,𝑛)

Proof of Theorem eulerpartlemgc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2re 12267 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 2 ∈ ℝ)
3 bitsss 16403 . . . . 5 (bits‘(𝐴𝑡)) ⊆ ℕ0
4 simprr 772 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ (bits‘(𝐴𝑡)))
53, 4sselid 3947 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ ℕ0)
62, 5reexpcld 14135 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℝ)
7 simprl 770 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℕ)
87nnred 12208 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ)
96, 8remulcld 11211 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ∈ ℝ)
10 eulerpartlems.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
11 eulerpartlems.s . . . . . . . 8 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
1210, 11eulerpartlemelr 34355 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
1312simpld 494 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
1413ffvelcdmda 7059 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
1514adantrr 717 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℕ0)
1615nn0red 12511 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
1716, 8remulcld 11211 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ∈ ℝ)
1810, 11eulerpartlemsf 34357 . . . . 5 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
1918ffvelcdmi 7058 . . . 4 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
2019adantr 480 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℕ0)
2120nn0red 12511 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℝ)
2214nn0red 12511 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℝ)
2322adantrr 717 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
247nnrpd 13000 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ+)
2524rprege0d 13009 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡))
26 bitsfi 16414 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → (bits‘(𝐴𝑡)) ∈ Fin)
2715, 26syl 17 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ∈ Fin)
281a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 2 ∈ ℝ)
293a1i 11 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ⊆ ℕ0)
3029sselda 3949 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 𝑖 ∈ ℕ0)
3128, 30reexpcld 14135 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → (2↑𝑖) ∈ ℝ)
32 0le2 12295 . . . . . . 7 0 ≤ 2
3332a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ 2)
3428, 30, 33expge0d 14136 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ (2↑𝑖))
354snssd 4776 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → {𝑛} ⊆ (bits‘(𝐴𝑡)))
3627, 31, 34, 35fsumless 15769 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) ≤ Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖))
376recnd 11209 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℂ)
38 oveq2 7398 . . . . . 6 (𝑖 = 𝑛 → (2↑𝑖) = (2↑𝑛))
3938sumsn 15719 . . . . 5 ((𝑛 ∈ (bits‘(𝐴𝑡)) ∧ (2↑𝑛) ∈ ℂ) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
404, 37, 39syl2anc 584 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
41 bitsinv1 16419 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4215, 41syl 17 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4336, 40, 423brtr3d 5141 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ≤ (𝐴𝑡))
44 lemul1a 12043 . . 3 ((((2↑𝑛) ∈ ℝ ∧ (𝐴𝑡) ∈ ℝ ∧ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡)) ∧ (2↑𝑛) ≤ (𝐴𝑡)) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
456, 23, 25, 43, 44syl31anc 1375 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
46 fzfid 13945 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → (1...(𝑆𝐴)) ∈ Fin)
47 elfznn 13521 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑆𝐴)) → 𝑘 ∈ ℕ)
48 ffvelcdm 7056 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℕ0)
4913, 47, 48syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℕ0)
5049nn0red 12511 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℝ)
5147adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℕ)
5251nnred 12208 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℝ)
5350, 52remulcld 11211 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5453adantlr 715 . . . . . . 7 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5549nn0ge0d 12513 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ (𝐴𝑘))
56 0red 11184 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ∈ ℝ)
5751nngt0d 12242 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 < 𝑘)
5856, 52, 57ltled 11329 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ 𝑘)
5950, 52, 55, 58mulge0d 11762 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
6059adantlr 715 . . . . . . 7 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
61 fveq2 6861 . . . . . . . 8 (𝑘 = 𝑡 → (𝐴𝑘) = (𝐴𝑡))
62 id 22 . . . . . . . 8 (𝑘 = 𝑡𝑘 = 𝑡)
6361, 62oveq12d 7408 . . . . . . 7 (𝑘 = 𝑡 → ((𝐴𝑘) · 𝑘) = ((𝐴𝑡) · 𝑡))
64 simpr 484 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → 𝑡 ∈ (1...(𝑆𝐴)))
6546, 54, 60, 63, 64fsumge1 15770 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
6665adantlr 715 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
67 eldif 3927 . . . . . . 7 (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
68 nndiffz1 32716 . . . . . . . . . . . . . 14 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
6968eleq2d 2815 . . . . . . . . . . . . 13 ((𝑆𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7019, 69syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7170pm5.32i 574 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) ↔ (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7210, 11eulerpartlems 34358 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
7371, 72sylbi 217 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) = 0)
7473oveq1d 7405 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = (0 · 𝑡))
75 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))))
7675eldifad 3929 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℕ)
7776nncnd 12209 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℂ)
7877mul02d 11379 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (0 · 𝑡) = 0)
7974, 78eqtrd 2765 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = 0)
80 fzfid 13945 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (1...(𝑆𝐴)) ∈ Fin)
8180, 53, 59fsumge0 15768 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8281adantr 480 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8379, 82eqbrtrd 5132 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8467, 83sylan2br 595 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8584anassrs 467 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8666, 85pm2.61dan 812 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8710, 11eulerpartlemsv3 34359 . . . . 5 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8887adantr 480 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8986, 88breqtrrd 5138 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
9089adantrr 717 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
919, 17, 21, 45, 90letrd 11338 1 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2708  cdif 3914  cin 3916  wss 3917  {csn 4592   class class class wbr 5110  cmpt 5191  ccnv 5640  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080  cle 11216  cn 12193  2c2 12248  0cn0 12449  cuz 12800  ...cfz 13475  cexp 14033  Σcsu 15659  bitscbits 16396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-dvds 16230  df-bits 16399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator