Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgc Structured version   Visualization version   GIF version

Theorem eulerpartlemgc 33349
Description: Lemma for eulerpart 33369. (Contributed by Thierry Arnoux, 9-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (◑𝑓 β€œ β„•) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ↦ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜))
Assertion
Ref Expression
eulerpartlemgc ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ ((2↑𝑛) Β· 𝑑) ≀ (π‘†β€˜π΄))
Distinct variable groups:   𝑓,π‘˜,𝐴   𝑅,𝑓,π‘˜   𝑑,π‘˜,𝐴   𝑑,𝑅   𝑑,𝑆,π‘˜
Allowed substitution hints:   𝐴(𝑛)   𝑅(𝑛)   𝑆(𝑓,𝑛)

Proof of Theorem eulerpartlemgc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2re 12282 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ 2 ∈ ℝ)
3 bitsss 16363 . . . . 5 (bitsβ€˜(π΄β€˜π‘‘)) βŠ† β„•0
4 simprr 771 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))
53, 4sselid 3979 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ 𝑛 ∈ β„•0)
62, 5reexpcld 14124 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (2↑𝑛) ∈ ℝ)
7 simprl 769 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ 𝑑 ∈ β„•)
87nnred 12223 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ 𝑑 ∈ ℝ)
96, 8remulcld 11240 . 2 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ ((2↑𝑛) Β· 𝑑) ∈ ℝ)
10 eulerpartlems.r . . . . . . . 8 𝑅 = {𝑓 ∣ (◑𝑓 β€œ β„•) ∈ Fin}
11 eulerpartlems.s . . . . . . . 8 𝑆 = (𝑓 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ↦ Ξ£π‘˜ ∈ β„• ((π‘“β€˜π‘˜) Β· π‘˜))
1210, 11eulerpartlemelr 33344 . . . . . . 7 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (𝐴:β„•βŸΆβ„•0 ∧ (◑𝐴 β€œ β„•) ∈ Fin))
1312simpld 495 . . . . . 6 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ 𝐴:β„•βŸΆβ„•0)
1413ffvelcdmda 7083 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ β„•) β†’ (π΄β€˜π‘‘) ∈ β„•0)
1514adantrr 715 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (π΄β€˜π‘‘) ∈ β„•0)
1615nn0red 12529 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (π΄β€˜π‘‘) ∈ ℝ)
1716, 8remulcld 11240 . 2 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ∈ ℝ)
1810, 11eulerpartlemsf 33346 . . . . 5 𝑆:((β„•0 ↑m β„•) ∩ 𝑅)βŸΆβ„•0
1918ffvelcdmi 7082 . . . 4 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (π‘†β€˜π΄) ∈ β„•0)
2019adantr 481 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (π‘†β€˜π΄) ∈ β„•0)
2120nn0red 12529 . 2 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (π‘†β€˜π΄) ∈ ℝ)
2214nn0red 12529 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ β„•) β†’ (π΄β€˜π‘‘) ∈ ℝ)
2322adantrr 715 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (π΄β€˜π‘‘) ∈ ℝ)
247nnrpd 13010 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ 𝑑 ∈ ℝ+)
2524rprege0d 13019 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (𝑑 ∈ ℝ ∧ 0 ≀ 𝑑))
26 bitsfi 16374 . . . . . 6 ((π΄β€˜π‘‘) ∈ β„•0 β†’ (bitsβ€˜(π΄β€˜π‘‘)) ∈ Fin)
2715, 26syl 17 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (bitsβ€˜(π΄β€˜π‘‘)) ∈ Fin)
281a1i 11 . . . . . 6 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) ∧ 𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))) β†’ 2 ∈ ℝ)
293a1i 11 . . . . . . 7 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (bitsβ€˜(π΄β€˜π‘‘)) βŠ† β„•0)
3029sselda 3981 . . . . . 6 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) ∧ 𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))) β†’ 𝑖 ∈ β„•0)
3128, 30reexpcld 14124 . . . . 5 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) ∧ 𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))) β†’ (2↑𝑖) ∈ ℝ)
32 0le2 12310 . . . . . . 7 0 ≀ 2
3332a1i 11 . . . . . 6 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) ∧ 𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))) β†’ 0 ≀ 2)
3428, 30, 33expge0d 14125 . . . . 5 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) ∧ 𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))) β†’ 0 ≀ (2↑𝑖))
354snssd 4811 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ {𝑛} βŠ† (bitsβ€˜(π΄β€˜π‘‘)))
3627, 31, 34, 35fsumless 15738 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ Σ𝑖 ∈ {𝑛} (2↑𝑖) ≀ Σ𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))(2↑𝑖))
376recnd 11238 . . . . 5 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (2↑𝑛) ∈ β„‚)
38 oveq2 7413 . . . . . 6 (𝑖 = 𝑛 β†’ (2↑𝑖) = (2↑𝑛))
3938sumsn 15688 . . . . 5 ((𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)) ∧ (2↑𝑛) ∈ β„‚) β†’ Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
404, 37, 39syl2anc 584 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
41 bitsinv1 16379 . . . . 5 ((π΄β€˜π‘‘) ∈ β„•0 β†’ Σ𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))(2↑𝑖) = (π΄β€˜π‘‘))
4215, 41syl 17 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ Σ𝑖 ∈ (bitsβ€˜(π΄β€˜π‘‘))(2↑𝑖) = (π΄β€˜π‘‘))
4336, 40, 423brtr3d 5178 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ (2↑𝑛) ≀ (π΄β€˜π‘‘))
44 lemul1a 12064 . . 3 ((((2↑𝑛) ∈ ℝ ∧ (π΄β€˜π‘‘) ∈ ℝ ∧ (𝑑 ∈ ℝ ∧ 0 ≀ 𝑑)) ∧ (2↑𝑛) ≀ (π΄β€˜π‘‘)) β†’ ((2↑𝑛) Β· 𝑑) ≀ ((π΄β€˜π‘‘) Β· 𝑑))
456, 23, 25, 43, 44syl31anc 1373 . 2 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ ((2↑𝑛) Β· 𝑑) ≀ ((π΄β€˜π‘‘) Β· 𝑑))
46 fzfid 13934 . . . . . . 7 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (1...(π‘†β€˜π΄))) β†’ (1...(π‘†β€˜π΄)) ∈ Fin)
47 elfznn 13526 . . . . . . . . . . 11 (π‘˜ ∈ (1...(π‘†β€˜π΄)) β†’ π‘˜ ∈ β„•)
48 ffvelcdm 7080 . . . . . . . . . . 11 ((𝐴:β„•βŸΆβ„•0 ∧ π‘˜ ∈ β„•) β†’ (π΄β€˜π‘˜) ∈ β„•0)
4913, 47, 48syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ (π΄β€˜π‘˜) ∈ β„•0)
5049nn0red 12529 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ (π΄β€˜π‘˜) ∈ ℝ)
5147adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ π‘˜ ∈ β„•)
5251nnred 12223 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ π‘˜ ∈ ℝ)
5350, 52remulcld 11240 . . . . . . . 8 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ ((π΄β€˜π‘˜) Β· π‘˜) ∈ ℝ)
5453adantlr 713 . . . . . . 7 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (1...(π‘†β€˜π΄))) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ ((π΄β€˜π‘˜) Β· π‘˜) ∈ ℝ)
5549nn0ge0d 12531 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ 0 ≀ (π΄β€˜π‘˜))
56 0red 11213 . . . . . . . . . 10 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ 0 ∈ ℝ)
5751nngt0d 12257 . . . . . . . . . 10 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ 0 < π‘˜)
5856, 52, 57ltled 11358 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ 0 ≀ π‘˜)
5950, 52, 55, 58mulge0d 11787 . . . . . . . 8 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ 0 ≀ ((π΄β€˜π‘˜) Β· π‘˜))
6059adantlr 713 . . . . . . 7 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (1...(π‘†β€˜π΄))) ∧ π‘˜ ∈ (1...(π‘†β€˜π΄))) β†’ 0 ≀ ((π΄β€˜π‘˜) Β· π‘˜))
61 fveq2 6888 . . . . . . . 8 (π‘˜ = 𝑑 β†’ (π΄β€˜π‘˜) = (π΄β€˜π‘‘))
62 id 22 . . . . . . . 8 (π‘˜ = 𝑑 β†’ π‘˜ = 𝑑)
6361, 62oveq12d 7423 . . . . . . 7 (π‘˜ = 𝑑 β†’ ((π΄β€˜π‘˜) Β· π‘˜) = ((π΄β€˜π‘‘) Β· 𝑑))
64 simpr 485 . . . . . . 7 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (1...(π‘†β€˜π΄))) β†’ 𝑑 ∈ (1...(π‘†β€˜π΄)))
6546, 54, 60, 63, 64fsumge1 15739 . . . . . 6 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (1...(π‘†β€˜π΄))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
6665adantlr 713 . . . . 5 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ β„•) ∧ 𝑑 ∈ (1...(π‘†β€˜π΄))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
67 eldif 3957 . . . . . . 7 (𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄))) ↔ (𝑑 ∈ β„• ∧ Β¬ 𝑑 ∈ (1...(π‘†β€˜π΄))))
68 nndiffz1 31984 . . . . . . . . . . . . . 14 ((π‘†β€˜π΄) ∈ β„•0 β†’ (β„• βˆ– (1...(π‘†β€˜π΄))) = (β„€β‰₯β€˜((π‘†β€˜π΄) + 1)))
6968eleq2d 2819 . . . . . . . . . . . . 13 ((π‘†β€˜π΄) ∈ β„•0 β†’ (𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄))) ↔ 𝑑 ∈ (β„€β‰₯β€˜((π‘†β€˜π΄) + 1))))
7019, 69syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄))) ↔ 𝑑 ∈ (β„€β‰₯β€˜((π‘†β€˜π΄) + 1))))
7170pm5.32i 575 . . . . . . . . . . 11 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) ↔ (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„€β‰₯β€˜((π‘†β€˜π΄) + 1))))
7210, 11eulerpartlems 33347 . . . . . . . . . . 11 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„€β‰₯β€˜((π‘†β€˜π΄) + 1))) β†’ (π΄β€˜π‘‘) = 0)
7371, 72sylbi 216 . . . . . . . . . 10 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ (π΄β€˜π‘‘) = 0)
7473oveq1d 7420 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) = (0 Β· 𝑑))
75 simpr 485 . . . . . . . . . . . 12 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄))))
7675eldifad 3959 . . . . . . . . . . 11 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ 𝑑 ∈ β„•)
7776nncnd 12224 . . . . . . . . . 10 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ 𝑑 ∈ β„‚)
7877mul02d 11408 . . . . . . . . 9 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ (0 Β· 𝑑) = 0)
7974, 78eqtrd 2772 . . . . . . . 8 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) = 0)
80 fzfid 13934 . . . . . . . . . 10 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (1...(π‘†β€˜π΄)) ∈ Fin)
8180, 53, 59fsumge0 15737 . . . . . . . . 9 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ 0 ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8281adantr 481 . . . . . . . 8 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ 0 ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8379, 82eqbrtrd 5169 . . . . . . 7 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ (β„• βˆ– (1...(π‘†β€˜π΄)))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8467, 83sylan2br 595 . . . . . 6 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ Β¬ 𝑑 ∈ (1...(π‘†β€˜π΄)))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8584anassrs 468 . . . . 5 (((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ β„•) ∧ Β¬ 𝑑 ∈ (1...(π‘†β€˜π΄))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8666, 85pm2.61dan 811 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ β„•) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8710, 11eulerpartlemsv3 33348 . . . . 5 (𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) β†’ (π‘†β€˜π΄) = Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8887adantr 481 . . . 4 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ β„•) β†’ (π‘†β€˜π΄) = Ξ£π‘˜ ∈ (1...(π‘†β€˜π΄))((π΄β€˜π‘˜) Β· π‘˜))
8986, 88breqtrrd 5175 . . 3 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ 𝑑 ∈ β„•) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ (π‘†β€˜π΄))
9089adantrr 715 . 2 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ ((π΄β€˜π‘‘) Β· 𝑑) ≀ (π‘†β€˜π΄))
919, 17, 21, 45, 90letrd 11367 1 ((𝐴 ∈ ((β„•0 ↑m β„•) ∩ 𝑅) ∧ (𝑑 ∈ β„• ∧ 𝑛 ∈ (bitsβ€˜(π΄β€˜π‘‘)))) β†’ ((2↑𝑛) Β· 𝑑) ≀ (π‘†β€˜π΄))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106  {cab 2709   βˆ– cdif 3944   ∩ cin 3946   βŠ† wss 3947  {csn 4627   class class class wbr 5147   ↦ cmpt 5230  β—‘ccnv 5674   β€œ cima 5678  βŸΆwf 6536  β€˜cfv 6540  (class class class)co 7405   ↑m cmap 8816  Fincfn 8935  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   + caddc 11109   Β· cmul 11111   ≀ cle 11245  β„•cn 12208  2c2 12263  β„•0cn0 12468  β„€β‰₯cuz 12818  ...cfz 13480  β†‘cexp 14023  Ξ£csu 15628  bitscbits 16356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-ico 13326  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-rlim 15429  df-sum 15629  df-dvds 16194  df-bits 16359
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator