Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgc Structured version   Visualization version   GIF version

Theorem eulerpartlemgc 32329
Description: Lemma for eulerpart 32349. (Contributed by Thierry Arnoux, 9-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemgc ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑡,𝑘,𝐴   𝑡,𝑅   𝑡,𝑆,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝑅(𝑛)   𝑆(𝑓,𝑛)

Proof of Theorem eulerpartlemgc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2re 12047 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 2 ∈ ℝ)
3 bitsss 16133 . . . . 5 (bits‘(𝐴𝑡)) ⊆ ℕ0
4 simprr 770 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ (bits‘(𝐴𝑡)))
53, 4sselid 3919 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ ℕ0)
62, 5reexpcld 13881 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℝ)
7 simprl 768 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℕ)
87nnred 11988 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ)
96, 8remulcld 11005 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ∈ ℝ)
10 eulerpartlems.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
11 eulerpartlems.s . . . . . . . 8 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
1210, 11eulerpartlemelr 32324 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
1312simpld 495 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
1413ffvelrnda 6961 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
1514adantrr 714 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℕ0)
1615nn0red 12294 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
1716, 8remulcld 11005 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ∈ ℝ)
1810, 11eulerpartlemsf 32326 . . . . 5 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
1918ffvelrni 6960 . . . 4 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
2019adantr 481 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℕ0)
2120nn0red 12294 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℝ)
2214nn0red 12294 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℝ)
2322adantrr 714 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
247nnrpd 12770 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ+)
2524rprege0d 12779 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡))
26 bitsfi 16144 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → (bits‘(𝐴𝑡)) ∈ Fin)
2715, 26syl 17 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ∈ Fin)
281a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 2 ∈ ℝ)
293a1i 11 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ⊆ ℕ0)
3029sselda 3921 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 𝑖 ∈ ℕ0)
3128, 30reexpcld 13881 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → (2↑𝑖) ∈ ℝ)
32 0le2 12075 . . . . . . 7 0 ≤ 2
3332a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ 2)
3428, 30, 33expge0d 13882 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ (2↑𝑖))
354snssd 4742 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → {𝑛} ⊆ (bits‘(𝐴𝑡)))
3627, 31, 34, 35fsumless 15508 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) ≤ Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖))
376recnd 11003 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℂ)
38 oveq2 7283 . . . . . 6 (𝑖 = 𝑛 → (2↑𝑖) = (2↑𝑛))
3938sumsn 15458 . . . . 5 ((𝑛 ∈ (bits‘(𝐴𝑡)) ∧ (2↑𝑛) ∈ ℂ) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
404, 37, 39syl2anc 584 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
41 bitsinv1 16149 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4215, 41syl 17 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4336, 40, 423brtr3d 5105 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ≤ (𝐴𝑡))
44 lemul1a 11829 . . 3 ((((2↑𝑛) ∈ ℝ ∧ (𝐴𝑡) ∈ ℝ ∧ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡)) ∧ (2↑𝑛) ≤ (𝐴𝑡)) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
456, 23, 25, 43, 44syl31anc 1372 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
46 fzfid 13693 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → (1...(𝑆𝐴)) ∈ Fin)
47 elfznn 13285 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑆𝐴)) → 𝑘 ∈ ℕ)
48 ffvelrn 6959 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℕ0)
4913, 47, 48syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℕ0)
5049nn0red 12294 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℝ)
5147adantl 482 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℕ)
5251nnred 11988 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℝ)
5350, 52remulcld 11005 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5453adantlr 712 . . . . . . 7 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5549nn0ge0d 12296 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ (𝐴𝑘))
56 0red 10978 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ∈ ℝ)
5751nngt0d 12022 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 < 𝑘)
5856, 52, 57ltled 11123 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ 𝑘)
5950, 52, 55, 58mulge0d 11552 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
6059adantlr 712 . . . . . . 7 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
61 fveq2 6774 . . . . . . . 8 (𝑘 = 𝑡 → (𝐴𝑘) = (𝐴𝑡))
62 id 22 . . . . . . . 8 (𝑘 = 𝑡𝑘 = 𝑡)
6361, 62oveq12d 7293 . . . . . . 7 (𝑘 = 𝑡 → ((𝐴𝑘) · 𝑘) = ((𝐴𝑡) · 𝑡))
64 simpr 485 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → 𝑡 ∈ (1...(𝑆𝐴)))
6546, 54, 60, 63, 64fsumge1 15509 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
6665adantlr 712 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
67 eldif 3897 . . . . . . 7 (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
68 nndiffz1 31107 . . . . . . . . . . . . . 14 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
6968eleq2d 2824 . . . . . . . . . . . . 13 ((𝑆𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7019, 69syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7170pm5.32i 575 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) ↔ (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7210, 11eulerpartlems 32327 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
7371, 72sylbi 216 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) = 0)
7473oveq1d 7290 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = (0 · 𝑡))
75 simpr 485 . . . . . . . . . . . 12 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))))
7675eldifad 3899 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℕ)
7776nncnd 11989 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℂ)
7877mul02d 11173 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (0 · 𝑡) = 0)
7974, 78eqtrd 2778 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = 0)
80 fzfid 13693 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (1...(𝑆𝐴)) ∈ Fin)
8180, 53, 59fsumge0 15507 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8281adantr 481 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8379, 82eqbrtrd 5096 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8467, 83sylan2br 595 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8584anassrs 468 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8666, 85pm2.61dan 810 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8710, 11eulerpartlemsv3 32328 . . . . 5 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8887adantr 481 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8986, 88breqtrrd 5102 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
9089adantrr 714 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
919, 17, 21, 45, 90letrd 11132 1 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {cab 2715  cdif 3884  cin 3886  wss 3887  {csn 4561   class class class wbr 5074  cmpt 5157  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cle 11010  cn 11973  2c2 12028  0cn0 12233  cuz 12582  ...cfz 13239  cexp 13782  Σcsu 15397  bitscbits 16126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-ico 13085  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-dvds 15964  df-bits 16129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator