Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemgc Structured version   Visualization version   GIF version

Theorem eulerpartlemgc 34329
Description: Lemma for eulerpart 34349. (Contributed by Thierry Arnoux, 9-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemgc ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑅,𝑓,𝑘   𝑡,𝑘,𝐴   𝑡,𝑅   𝑡,𝑆,𝑘
Allowed substitution hints:   𝐴(𝑛)   𝑅(𝑛)   𝑆(𝑓,𝑛)

Proof of Theorem eulerpartlemgc
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 2re 12220 . . . . 5 2 ∈ ℝ
21a1i 11 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 2 ∈ ℝ)
3 bitsss 16355 . . . . 5 (bits‘(𝐴𝑡)) ⊆ ℕ0
4 simprr 772 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ (bits‘(𝐴𝑡)))
53, 4sselid 3935 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑛 ∈ ℕ0)
62, 5reexpcld 14088 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℝ)
7 simprl 770 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℕ)
87nnred 12161 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ)
96, 8remulcld 11164 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ∈ ℝ)
10 eulerpartlems.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
11 eulerpartlems.s . . . . . . . 8 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
1210, 11eulerpartlemelr 34324 . . . . . . 7 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin))
1312simpld 494 . . . . . 6 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝐴:ℕ⟶ℕ0)
1413ffvelcdmda 7022 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℕ0)
1514adantrr 717 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℕ0)
1615nn0red 12464 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
1716, 8remulcld 11164 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ∈ ℝ)
1810, 11eulerpartlemsf 34326 . . . . 5 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
1918ffvelcdmi 7021 . . . 4 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) ∈ ℕ0)
2019adantr 480 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℕ0)
2120nn0red 12464 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑆𝐴) ∈ ℝ)
2214nn0red 12464 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝐴𝑡) ∈ ℝ)
2322adantrr 717 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝐴𝑡) ∈ ℝ)
247nnrpd 12953 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → 𝑡 ∈ ℝ+)
2524rprege0d 12962 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡))
26 bitsfi 16366 . . . . . 6 ((𝐴𝑡) ∈ ℕ0 → (bits‘(𝐴𝑡)) ∈ Fin)
2715, 26syl 17 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ∈ Fin)
281a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 2 ∈ ℝ)
293a1i 11 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (bits‘(𝐴𝑡)) ⊆ ℕ0)
3029sselda 3937 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 𝑖 ∈ ℕ0)
3128, 30reexpcld 14088 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → (2↑𝑖) ∈ ℝ)
32 0le2 12248 . . . . . . 7 0 ≤ 2
3332a1i 11 . . . . . 6 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ 2)
3428, 30, 33expge0d 14089 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) ∧ 𝑖 ∈ (bits‘(𝐴𝑡))) → 0 ≤ (2↑𝑖))
354snssd 4763 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → {𝑛} ⊆ (bits‘(𝐴𝑡)))
3627, 31, 34, 35fsumless 15721 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) ≤ Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖))
376recnd 11162 . . . . 5 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ∈ ℂ)
38 oveq2 7361 . . . . . 6 (𝑖 = 𝑛 → (2↑𝑖) = (2↑𝑛))
3938sumsn 15671 . . . . 5 ((𝑛 ∈ (bits‘(𝐴𝑡)) ∧ (2↑𝑛) ∈ ℂ) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
404, 37, 39syl2anc 584 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ {𝑛} (2↑𝑖) = (2↑𝑛))
41 bitsinv1 16371 . . . . 5 ((𝐴𝑡) ∈ ℕ0 → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4215, 41syl 17 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → Σ𝑖 ∈ (bits‘(𝐴𝑡))(2↑𝑖) = (𝐴𝑡))
4336, 40, 423brtr3d 5126 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → (2↑𝑛) ≤ (𝐴𝑡))
44 lemul1a 11996 . . 3 ((((2↑𝑛) ∈ ℝ ∧ (𝐴𝑡) ∈ ℝ ∧ (𝑡 ∈ ℝ ∧ 0 ≤ 𝑡)) ∧ (2↑𝑛) ≤ (𝐴𝑡)) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
456, 23, 25, 43, 44syl31anc 1375 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ ((𝐴𝑡) · 𝑡))
46 fzfid 13898 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → (1...(𝑆𝐴)) ∈ Fin)
47 elfznn 13474 . . . . . . . . . . 11 (𝑘 ∈ (1...(𝑆𝐴)) → 𝑘 ∈ ℕ)
48 ffvelcdm 7019 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ ℕ) → (𝐴𝑘) ∈ ℕ0)
4913, 47, 48syl2an 596 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℕ0)
5049nn0red 12464 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → (𝐴𝑘) ∈ ℝ)
5147adantl 481 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℕ)
5251nnred 12161 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 𝑘 ∈ ℝ)
5350, 52remulcld 11164 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5453adantlr 715 . . . . . . 7 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → ((𝐴𝑘) · 𝑘) ∈ ℝ)
5549nn0ge0d 12466 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ (𝐴𝑘))
56 0red 11137 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ∈ ℝ)
5751nngt0d 12195 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 < 𝑘)
5856, 52, 57ltled 11282 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ 𝑘)
5950, 52, 55, 58mulge0d 11715 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
6059adantlr 715 . . . . . . 7 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) ∧ 𝑘 ∈ (1...(𝑆𝐴))) → 0 ≤ ((𝐴𝑘) · 𝑘))
61 fveq2 6826 . . . . . . . 8 (𝑘 = 𝑡 → (𝐴𝑘) = (𝐴𝑡))
62 id 22 . . . . . . . 8 (𝑘 = 𝑡𝑘 = 𝑡)
6361, 62oveq12d 7371 . . . . . . 7 (𝑘 = 𝑡 → ((𝐴𝑘) · 𝑘) = ((𝐴𝑡) · 𝑡))
64 simpr 484 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → 𝑡 ∈ (1...(𝑆𝐴)))
6546, 54, 60, 63, 64fsumge1 15722 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
6665adantlr 715 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
67 eldif 3915 . . . . . . 7 (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))))
68 nndiffz1 32742 . . . . . . . . . . . . . 14 ((𝑆𝐴) ∈ ℕ0 → (ℕ ∖ (1...(𝑆𝐴))) = (ℤ‘((𝑆𝐴) + 1)))
6968eleq2d 2814 . . . . . . . . . . . . 13 ((𝑆𝐴) ∈ ℕ0 → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7019, 69syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))) ↔ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7170pm5.32i 574 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) ↔ (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))))
7210, 11eulerpartlems 34327 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℤ‘((𝑆𝐴) + 1))) → (𝐴𝑡) = 0)
7371, 72sylbi 217 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (𝐴𝑡) = 0)
7473oveq1d 7368 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = (0 · 𝑡))
75 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴))))
7675eldifad 3917 . . . . . . . . . . 11 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℕ)
7776nncnd 12162 . . . . . . . . . 10 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 𝑡 ∈ ℂ)
7877mul02d 11332 . . . . . . . . 9 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → (0 · 𝑡) = 0)
7974, 78eqtrd 2764 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) = 0)
80 fzfid 13898 . . . . . . . . . 10 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (1...(𝑆𝐴)) ∈ Fin)
8180, 53, 59fsumge0 15720 . . . . . . . . 9 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8281adantr 480 . . . . . . . 8 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → 0 ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8379, 82eqbrtrd 5117 . . . . . . 7 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ (ℕ ∖ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8467, 83sylan2br 595 . . . . . 6 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴)))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8584anassrs 467 . . . . 5 (((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) ∧ ¬ 𝑡 ∈ (1...(𝑆𝐴))) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8666, 85pm2.61dan 812 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8710, 11eulerpartlemsv3 34328 . . . . 5 (𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8887adantr 480 . . . 4 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → (𝑆𝐴) = Σ𝑘 ∈ (1...(𝑆𝐴))((𝐴𝑘) · 𝑘))
8986, 88breqtrrd 5123 . . 3 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑡 ∈ ℕ) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
9089adantrr 717 . 2 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((𝐴𝑡) · 𝑡) ≤ (𝑆𝐴))
919, 17, 21, 45, 90letrd 11291 1 ((𝐴 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ (𝑡 ∈ ℕ ∧ 𝑛 ∈ (bits‘(𝐴𝑡)))) → ((2↑𝑛) · 𝑡) ≤ (𝑆𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  cdif 3902  cin 3904  wss 3905  {csn 4579   class class class wbr 5095  cmpt 5176  ccnv 5622  cima 5626  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033  cle 11169  cn 12146  2c2 12201  0cn0 12402  cuz 12753  ...cfz 13428  cexp 13986  Σcsu 15611  bitscbits 16348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-dvds 16182  df-bits 16351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator