| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsf | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34385. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemsf | ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpartlems.s | . 2 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
| 2 | simpl 482 | . . . . . . 7 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → 𝑔 = 𝑓) | |
| 3 | 2 | fveq1d 6819 | . . . . . 6 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → (𝑔‘𝑘) = (𝑓‘𝑘)) |
| 4 | 3 | oveq1d 7356 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → ((𝑔‘𝑘) · 𝑘) = ((𝑓‘𝑘) · 𝑘)) |
| 5 | 4 | sumeq2dv 15601 | . . . 4 ⊢ (𝑔 = 𝑓 → Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| 6 | 5 | eleq1d 2814 | . . 3 ⊢ (𝑔 = 𝑓 → (Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) ∈ ℕ0 ↔ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) ∈ ℕ0)) |
| 7 | eulerpartlems.r | . . . . . 6 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 8 | 7, 1 | eulerpartlemsv2 34361 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝑔) = Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
| 9 | 7, 1 | eulerpartlemsv1 34359 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝑔) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
| 10 | 8, 9 | eqtr3d 2767 | . . . 4 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
| 11 | 7, 1 | eulerpartlemelr 34360 | . . . . . 6 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑔:ℕ⟶ℕ0 ∧ (◡𝑔 “ ℕ) ∈ Fin)) |
| 12 | 11 | simprd 495 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝑔 “ ℕ) ∈ Fin) |
| 13 | 11 | simpld 494 | . . . . . . . 8 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝑔:ℕ⟶ℕ0) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑔:ℕ⟶ℕ0) |
| 15 | cnvimass 6028 | . . . . . . . . 9 ⊢ (◡𝑔 “ ℕ) ⊆ dom 𝑔 | |
| 16 | 15, 13 | fssdm 6666 | . . . . . . . 8 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝑔 “ ℕ) ⊆ ℕ) |
| 17 | 16 | sselda 3932 | . . . . . . 7 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ) |
| 18 | 14, 17 | ffvelcdmd 7013 | . . . . . 6 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → (𝑔‘𝑘) ∈ ℕ0) |
| 19 | 17 | nnnn0d 12434 | . . . . . 6 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ0) |
| 20 | 18, 19 | nn0mulcld 12439 | . . . . 5 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 21 | 12, 20 | fsumnn0cl 15635 | . . . 4 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 22 | 10, 21 | eqeltrrd 2830 | . . 3 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 23 | 6, 22 | vtoclga 3530 | . 2 ⊢ (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) ∈ ℕ0) |
| 24 | 1, 23 | fmpti 7040 | 1 ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2110 {cab 2708 ∩ cin 3899 ↦ cmpt 5170 ◡ccnv 5613 “ cima 5617 ⟶wf 6473 ‘cfv 6477 (class class class)co 7341 ↑m cmap 8745 Fincfn 8864 · cmul 11003 ℕcn 12117 ℕ0cn0 12373 Σcsu 15585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-inf2 9526 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-pre-sup 11076 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-isom 6486 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-sup 9321 df-oi 9391 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-div 11767 df-nn 12118 df-2 12180 df-3 12181 df-n0 12374 df-z 12461 df-uz 12725 df-rp 12883 df-fz 13400 df-fzo 13547 df-seq 13901 df-exp 13961 df-hash 14230 df-cj 14998 df-re 14999 df-im 15000 df-sqrt 15134 df-abs 15135 df-clim 15387 df-sum 15586 |
| This theorem is referenced by: eulerpartlems 34363 eulerpartlemsv3 34364 eulerpartlemgc 34365 |
| Copyright terms: Public domain | W3C validator |