| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsf | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34379. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemsf | ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpartlems.s | . 2 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
| 2 | simpl 482 | . . . . . . 7 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → 𝑔 = 𝑓) | |
| 3 | 2 | fveq1d 6862 | . . . . . 6 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → (𝑔‘𝑘) = (𝑓‘𝑘)) |
| 4 | 3 | oveq1d 7404 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → ((𝑔‘𝑘) · 𝑘) = ((𝑓‘𝑘) · 𝑘)) |
| 5 | 4 | sumeq2dv 15674 | . . . 4 ⊢ (𝑔 = 𝑓 → Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| 6 | 5 | eleq1d 2814 | . . 3 ⊢ (𝑔 = 𝑓 → (Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) ∈ ℕ0 ↔ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) ∈ ℕ0)) |
| 7 | eulerpartlems.r | . . . . . 6 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 8 | 7, 1 | eulerpartlemsv2 34355 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝑔) = Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
| 9 | 7, 1 | eulerpartlemsv1 34353 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝑔) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
| 10 | 8, 9 | eqtr3d 2767 | . . . 4 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
| 11 | 7, 1 | eulerpartlemelr 34354 | . . . . . 6 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑔:ℕ⟶ℕ0 ∧ (◡𝑔 “ ℕ) ∈ Fin)) |
| 12 | 11 | simprd 495 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝑔 “ ℕ) ∈ Fin) |
| 13 | 11 | simpld 494 | . . . . . . . 8 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝑔:ℕ⟶ℕ0) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑔:ℕ⟶ℕ0) |
| 15 | cnvimass 6055 | . . . . . . . . 9 ⊢ (◡𝑔 “ ℕ) ⊆ dom 𝑔 | |
| 16 | 15, 13 | fssdm 6709 | . . . . . . . 8 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝑔 “ ℕ) ⊆ ℕ) |
| 17 | 16 | sselda 3948 | . . . . . . 7 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ) |
| 18 | 14, 17 | ffvelcdmd 7059 | . . . . . 6 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → (𝑔‘𝑘) ∈ ℕ0) |
| 19 | 17 | nnnn0d 12509 | . . . . . 6 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ0) |
| 20 | 18, 19 | nn0mulcld 12514 | . . . . 5 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 21 | 12, 20 | fsumnn0cl 15708 | . . . 4 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 22 | 10, 21 | eqeltrrd 2830 | . . 3 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 23 | 6, 22 | vtoclga 3546 | . 2 ⊢ (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) ∈ ℕ0) |
| 24 | 1, 23 | fmpti 7086 | 1 ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∩ cin 3915 ↦ cmpt 5190 ◡ccnv 5639 “ cima 5643 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 Fincfn 8920 · cmul 11079 ℕcn 12187 ℕ0cn0 12448 Σcsu 15658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-inf2 9600 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 ax-pre-sup 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-int 4913 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-sup 9399 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-div 11842 df-nn 12188 df-2 12250 df-3 12251 df-n0 12449 df-z 12536 df-uz 12800 df-rp 12958 df-fz 13475 df-fzo 13622 df-seq 13973 df-exp 14033 df-hash 14302 df-cj 15071 df-re 15072 df-im 15073 df-sqrt 15207 df-abs 15208 df-clim 15460 df-sum 15659 |
| This theorem is referenced by: eulerpartlems 34357 eulerpartlemsv3 34358 eulerpartlemgc 34359 |
| Copyright terms: Public domain | W3C validator |