Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsf Structured version   Visualization version   GIF version

Theorem eulerpartlemsf 34341
Description: Lemma for eulerpart 34364. (Contributed by Thierry Arnoux, 8-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsf 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
Distinct variable group:   𝑓,𝑘,𝑅
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemsf
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.s . 2 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
2 simpl 482 . . . . . . 7 ((𝑔 = 𝑓𝑘 ∈ ℕ) → 𝑔 = 𝑓)
32fveq1d 6909 . . . . . 6 ((𝑔 = 𝑓𝑘 ∈ ℕ) → (𝑔𝑘) = (𝑓𝑘))
43oveq1d 7446 . . . . 5 ((𝑔 = 𝑓𝑘 ∈ ℕ) → ((𝑔𝑘) · 𝑘) = ((𝑓𝑘) · 𝑘))
54sumeq2dv 15735 . . . 4 (𝑔 = 𝑓 → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
65eleq1d 2824 . . 3 (𝑔 = 𝑓 → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0 ↔ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) ∈ ℕ0))
7 eulerpartlems.r . . . . . 6 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
87, 1eulerpartlemsv2 34340 . . . . 5 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝑔) = Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
97, 1eulerpartlemsv1 34338 . . . . 5 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝑔) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
108, 9eqtr3d 2777 . . . 4 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
117, 1eulerpartlemelr 34339 . . . . . 6 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin))
1211simprd 495 . . . . 5 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑔 “ ℕ) ∈ Fin)
1311simpld 494 . . . . . . . 8 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝑔:ℕ⟶ℕ0)
1413adantr 480 . . . . . . 7 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑔:ℕ⟶ℕ0)
15 cnvimass 6102 . . . . . . . . 9 (𝑔 “ ℕ) ⊆ dom 𝑔
1615, 13fssdm 6756 . . . . . . . 8 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑔 “ ℕ) ⊆ ℕ)
1716sselda 3995 . . . . . . 7 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
1814, 17ffvelcdmd 7105 . . . . . 6 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → (𝑔𝑘) ∈ ℕ0)
1917nnnn0d 12585 . . . . . 6 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ0)
2018, 19nn0mulcld 12590 . . . . 5 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
2112, 20fsumnn0cl 15769 . . . 4 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) ∈ ℕ0)
2210, 21eqeltrrd 2840 . . 3 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0)
236, 22vtoclga 3577 . 2 (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) ∈ ℕ0)
241, 23fmpti 7132 1 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wcel 2106  {cab 2712  cin 3962  cmpt 5231  ccnv 5688  cima 5692  wf 6559  cfv 6563  (class class class)co 7431  m cmap 8865  Fincfn 8984   · cmul 11158  cn 12264  0cn0 12524  Σcsu 15719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720
This theorem is referenced by:  eulerpartlems  34342  eulerpartlemsv3  34343  eulerpartlemgc  34344
  Copyright terms: Public domain W3C validator