Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsf Structured version   Visualization version   GIF version

Theorem eulerpartlemsf 32326
Description: Lemma for eulerpart 32349. (Contributed by Thierry Arnoux, 8-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsf 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
Distinct variable group:   𝑓,𝑘,𝑅
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemsf
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.s . 2 𝑆 = (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
2 simpl 483 . . . . . . 7 ((𝑔 = 𝑓𝑘 ∈ ℕ) → 𝑔 = 𝑓)
32fveq1d 6776 . . . . . 6 ((𝑔 = 𝑓𝑘 ∈ ℕ) → (𝑔𝑘) = (𝑓𝑘))
43oveq1d 7290 . . . . 5 ((𝑔 = 𝑓𝑘 ∈ ℕ) → ((𝑔𝑘) · 𝑘) = ((𝑓𝑘) · 𝑘))
54sumeq2dv 15415 . . . 4 (𝑔 = 𝑓 → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
65eleq1d 2823 . . 3 (𝑔 = 𝑓 → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0 ↔ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) ∈ ℕ0))
7 eulerpartlems.r . . . . . 6 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
87, 1eulerpartlemsv2 32325 . . . . 5 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝑔) = Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
97, 1eulerpartlemsv1 32323 . . . . 5 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑆𝑔) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
108, 9eqtr3d 2780 . . . 4 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
117, 1eulerpartlemelr 32324 . . . . . 6 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin))
1211simprd 496 . . . . 5 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑔 “ ℕ) ∈ Fin)
1311simpld 495 . . . . . . . 8 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → 𝑔:ℕ⟶ℕ0)
1413adantr 481 . . . . . . 7 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑔:ℕ⟶ℕ0)
15 cnvimass 5989 . . . . . . . . 9 (𝑔 “ ℕ) ⊆ dom 𝑔
1615, 13fssdm 6620 . . . . . . . 8 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → (𝑔 “ ℕ) ⊆ ℕ)
1716sselda 3921 . . . . . . 7 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
1814, 17ffvelrnd 6962 . . . . . 6 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → (𝑔𝑘) ∈ ℕ0)
1917nnnn0d 12293 . . . . . 6 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ0)
2018, 19nn0mulcld 12298 . . . . 5 ((𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
2112, 20fsumnn0cl 15448 . . . 4 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) ∈ ℕ0)
2210, 21eqeltrrd 2840 . . 3 (𝑔 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0)
236, 22vtoclga 3513 . 2 (𝑓 ∈ ((ℕ0m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) ∈ ℕ0)
241, 23fmpti 6986 1 𝑆:((ℕ0m ℕ) ∩ 𝑅)⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wcel 2106  {cab 2715  cin 3886  cmpt 5157  ccnv 5588  cima 5592  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733   · cmul 10876  cn 11973  0cn0 12233  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  eulerpartlems  32327  eulerpartlemsv3  32328  eulerpartlemgc  32329
  Copyright terms: Public domain W3C validator