Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemsf Structured version   Visualization version   GIF version

Theorem eulerpartlemsf 30965
Description: Lemma for eulerpart 30988. (Contributed by Thierry Arnoux, 8-Aug-2018.)
Hypotheses
Ref Expression
eulerpartlems.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpartlems.s 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
Assertion
Ref Expression
eulerpartlemsf 𝑆:((ℕ0𝑚 ℕ) ∩ 𝑅)⟶ℕ0
Distinct variable group:   𝑓,𝑘,𝑅
Allowed substitution hints:   𝑆(𝑓,𝑘)

Proof of Theorem eulerpartlemsf
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eulerpartlems.s . 2 𝑆 = (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
2 simpl 476 . . . . . . 7 ((𝑔 = 𝑓𝑘 ∈ ℕ) → 𝑔 = 𝑓)
32fveq1d 6434 . . . . . 6 ((𝑔 = 𝑓𝑘 ∈ ℕ) → (𝑔𝑘) = (𝑓𝑘))
43oveq1d 6919 . . . . 5 ((𝑔 = 𝑓𝑘 ∈ ℕ) → ((𝑔𝑘) · 𝑘) = ((𝑓𝑘) · 𝑘))
54sumeq2dv 14809 . . . 4 (𝑔 = 𝑓 → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘))
65eleq1d 2890 . . 3 (𝑔 = 𝑓 → (Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0 ↔ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) ∈ ℕ0))
7 eulerpartlems.r . . . . . 6 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
87, 1eulerpartlemsv2 30964 . . . . 5 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝑔) = Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘))
97, 1eulerpartlemsv1 30962 . . . . 5 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑆𝑔) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
108, 9eqtr3d 2862 . . . 4 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘))
117, 1eulerpartlemelr 30963 . . . . . 6 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑔:ℕ⟶ℕ0 ∧ (𝑔 “ ℕ) ∈ Fin))
1211simprd 491 . . . . 5 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑔 “ ℕ) ∈ Fin)
1311simpld 490 . . . . . . . 8 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → 𝑔:ℕ⟶ℕ0)
1413adantr 474 . . . . . . 7 ((𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑔:ℕ⟶ℕ0)
15 cnvimass 5725 . . . . . . . . 9 (𝑔 “ ℕ) ⊆ dom 𝑔
1615, 13fssdm 6293 . . . . . . . 8 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → (𝑔 “ ℕ) ⊆ ℕ)
1716sselda 3826 . . . . . . 7 ((𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ)
1814, 17ffvelrnd 6608 . . . . . 6 ((𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → (𝑔𝑘) ∈ ℕ0)
1917nnnn0d 11677 . . . . . 6 ((𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → 𝑘 ∈ ℕ0)
2018, 19nn0mulcld 11682 . . . . 5 ((𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (𝑔 “ ℕ)) → ((𝑔𝑘) · 𝑘) ∈ ℕ0)
2112, 20fsumnn0cl 14843 . . . 4 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → Σ𝑘 ∈ (𝑔 “ ℕ)((𝑔𝑘) · 𝑘) ∈ ℕ0)
2210, 21eqeltrrd 2906 . . 3 (𝑔 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑔𝑘) · 𝑘) ∈ ℕ0)
236, 22vtoclga 3488 . 2 (𝑓 ∈ ((ℕ0𝑚 ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) ∈ ℕ0)
241, 23fmpti 6630 1 𝑆:((ℕ0𝑚 ℕ) ∩ 𝑅)⟶ℕ0
Colors of variables: wff setvar class
Syntax hints:  wa 386   = wceq 1658  wcel 2166  {cab 2810  cin 3796  cmpt 4951  ccnv 5340  cima 5344  wf 6118  cfv 6122  (class class class)co 6904  𝑚 cmap 8121  Fincfn 8221   · cmul 10256  cn 11349  0cn0 11617  Σcsu 14792
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2390  ax-ext 2802  ax-rep 4993  ax-sep 5004  ax-nul 5012  ax-pow 5064  ax-pr 5126  ax-un 7208  ax-inf2 8814  ax-cnex 10307  ax-resscn 10308  ax-1cn 10309  ax-icn 10310  ax-addcl 10311  ax-addrcl 10312  ax-mulcl 10313  ax-mulrcl 10314  ax-mulcom 10315  ax-addass 10316  ax-mulass 10317  ax-distr 10318  ax-i2m1 10319  ax-1ne0 10320  ax-1rid 10321  ax-rnegex 10322  ax-rrecex 10323  ax-cnre 10324  ax-pre-lttri 10325  ax-pre-lttrn 10326  ax-pre-ltadd 10327  ax-pre-mulgt0 10328  ax-pre-sup 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-fal 1672  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2604  df-eu 2639  df-clab 2811  df-cleq 2817  df-clel 2820  df-nfc 2957  df-ne 2999  df-nel 3102  df-ral 3121  df-rex 3122  df-reu 3123  df-rmo 3124  df-rab 3125  df-v 3415  df-sbc 3662  df-csb 3757  df-dif 3800  df-un 3802  df-in 3804  df-ss 3811  df-pss 3813  df-nul 4144  df-if 4306  df-pw 4379  df-sn 4397  df-pr 4399  df-tp 4401  df-op 4403  df-uni 4658  df-int 4697  df-iun 4741  df-br 4873  df-opab 4935  df-mpt 4952  df-tr 4975  df-id 5249  df-eprel 5254  df-po 5262  df-so 5263  df-fr 5300  df-se 5301  df-we 5302  df-xp 5347  df-rel 5348  df-cnv 5349  df-co 5350  df-dm 5351  df-rn 5352  df-res 5353  df-ima 5354  df-pred 5919  df-ord 5965  df-on 5966  df-lim 5967  df-suc 5968  df-iota 6085  df-fun 6124  df-fn 6125  df-f 6126  df-f1 6127  df-fo 6128  df-f1o 6129  df-fv 6130  df-isom 6131  df-riota 6865  df-ov 6907  df-oprab 6908  df-mpt2 6909  df-om 7326  df-1st 7427  df-2nd 7428  df-wrecs 7671  df-recs 7733  df-rdg 7771  df-1o 7825  df-oadd 7829  df-er 8008  df-map 8123  df-en 8222  df-dom 8223  df-sdom 8224  df-fin 8225  df-sup 8616  df-oi 8683  df-card 9077  df-pnf 10392  df-mnf 10393  df-xr 10394  df-ltxr 10395  df-le 10396  df-sub 10586  df-neg 10587  df-div 11009  df-nn 11350  df-2 11413  df-3 11414  df-n0 11618  df-z 11704  df-uz 11968  df-rp 12112  df-fz 12619  df-fzo 12760  df-seq 13095  df-exp 13154  df-hash 13410  df-cj 14215  df-re 14216  df-im 14217  df-sqrt 14351  df-abs 14352  df-clim 14595  df-sum 14793
This theorem is referenced by:  eulerpartlems  30966  eulerpartlemsv3  30967  eulerpartlemgc  30968
  Copyright terms: Public domain W3C validator