| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemsf | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34349. (Contributed by Thierry Arnoux, 8-Aug-2018.) |
| Ref | Expression |
|---|---|
| eulerpartlems.r | ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} |
| eulerpartlems.s | ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| Ref | Expression |
|---|---|
| eulerpartlemsf | ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eulerpartlems.s | . 2 ⊢ 𝑆 = (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ↦ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) | |
| 2 | simpl 482 | . . . . . . 7 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → 𝑔 = 𝑓) | |
| 3 | 2 | fveq1d 6828 | . . . . . 6 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → (𝑔‘𝑘) = (𝑓‘𝑘)) |
| 4 | 3 | oveq1d 7368 | . . . . 5 ⊢ ((𝑔 = 𝑓 ∧ 𝑘 ∈ ℕ) → ((𝑔‘𝑘) · 𝑘) = ((𝑓‘𝑘) · 𝑘)) |
| 5 | 4 | sumeq2dv 15627 | . . . 4 ⊢ (𝑔 = 𝑓 → Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘)) |
| 6 | 5 | eleq1d 2813 | . . 3 ⊢ (𝑔 = 𝑓 → (Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) ∈ ℕ0 ↔ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) ∈ ℕ0)) |
| 7 | eulerpartlems.r | . . . . . 6 ⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
| 8 | 7, 1 | eulerpartlemsv2 34325 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝑔) = Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘)) |
| 9 | 7, 1 | eulerpartlemsv1 34323 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑆‘𝑔) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
| 10 | 8, 9 | eqtr3d 2766 | . . . 4 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘)) |
| 11 | 7, 1 | eulerpartlemelr 34324 | . . . . . 6 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (𝑔:ℕ⟶ℕ0 ∧ (◡𝑔 “ ℕ) ∈ Fin)) |
| 12 | 11 | simprd 495 | . . . . 5 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝑔 “ ℕ) ∈ Fin) |
| 13 | 11 | simpld 494 | . . . . . . . 8 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → 𝑔:ℕ⟶ℕ0) |
| 14 | 13 | adantr 480 | . . . . . . 7 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑔:ℕ⟶ℕ0) |
| 15 | cnvimass 6037 | . . . . . . . . 9 ⊢ (◡𝑔 “ ℕ) ⊆ dom 𝑔 | |
| 16 | 15, 13 | fssdm 6675 | . . . . . . . 8 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → (◡𝑔 “ ℕ) ⊆ ℕ) |
| 17 | 16 | sselda 3937 | . . . . . . 7 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ) |
| 18 | 14, 17 | ffvelcdmd 7023 | . . . . . 6 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → (𝑔‘𝑘) ∈ ℕ0) |
| 19 | 17 | nnnn0d 12463 | . . . . . 6 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → 𝑘 ∈ ℕ0) |
| 20 | 18, 19 | nn0mulcld 12468 | . . . . 5 ⊢ ((𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) ∧ 𝑘 ∈ (◡𝑔 “ ℕ)) → ((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 21 | 12, 20 | fsumnn0cl 15661 | . . . 4 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ (◡𝑔 “ ℕ)((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 22 | 10, 21 | eqeltrrd 2829 | . . 3 ⊢ (𝑔 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑔‘𝑘) · 𝑘) ∈ ℕ0) |
| 23 | 6, 22 | vtoclga 3534 | . 2 ⊢ (𝑓 ∈ ((ℕ0 ↑m ℕ) ∩ 𝑅) → Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) ∈ ℕ0) |
| 24 | 1, 23 | fmpti 7050 | 1 ⊢ 𝑆:((ℕ0 ↑m ℕ) ∩ 𝑅)⟶ℕ0 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∩ cin 3904 ↦ cmpt 5176 ◡ccnv 5622 “ cima 5626 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ↑m cmap 8760 Fincfn 8879 · cmul 11033 ℕcn 12146 ℕ0cn0 12402 Σcsu 15611 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-rp 12912 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-clim 15413 df-sum 15612 |
| This theorem is referenced by: eulerpartlems 34327 eulerpartlemsv3 34328 eulerpartlemgc 34329 |
| Copyright terms: Public domain | W3C validator |