| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11136 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 11672 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 0cc0 11028 ≤ cle 11169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-resscn 11085 ax-1cn 11086 ax-addrcl 11089 ax-rnegex 11099 ax-cnre 11101 ax-pre-lttri 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 |
| This theorem is referenced by: nn0ledivnn 13026 xsubge0 13181 xmulge0 13204 0e0icopnf 13379 0e0iccpnf 13380 0elunit 13390 0mod 13824 sqlecan 14134 discr 14165 cnpart 15165 sqrt0 15166 resqrex 15175 sqrt00 15188 fsumabs 15726 rpnnen2lem4 16144 divalglem7 16328 pcmptdvds 16824 prmreclem4 16849 prmreclem5 16850 prmreclem6 16851 ramz2 16954 ramz 16955 isabvd 20715 prdsxmetlem 24272 metustto 24457 cfilucfil 24463 nmolb2d 24622 nmoi 24632 nmoix 24633 nmoleub 24635 nmo0 24639 pcoval1 24929 pco0 24930 minveclem7 25351 ovolfiniun 25418 ovolicc1 25433 ioorf 25490 itg1ge0a 25628 mbfi1fseqlem5 25636 itg2const 25657 itg2const2 25658 itg2splitlem 25665 itg2cnlem1 25678 itg2cnlem2 25679 iblss 25722 itgle 25727 ibladdlem 25737 iblabs 25746 iblabsr 25747 iblmulc2 25748 bddmulibl 25756 bddiblnc 25759 c1lip1 25918 dveq0 25921 dv11cn 25922 fta1g 26091 abelthlem2 26358 sinq12ge0 26433 cxpge0 26608 abscxp2 26618 log2ublem3 26874 chtwordi 27082 ppiwordi 27088 chpub 27147 bposlem1 27211 bposlem6 27216 dchrisum0flblem2 27436 qabvle 27552 ostth2lem2 27561 colinearalg 28873 eucrct2eupth 30207 ex-po 30397 nvz0 30630 nmlnoubi 30758 nmblolbii 30761 blocnilem 30766 siilem2 30814 minvecolem7 30845 pjneli 31685 nmbdoplbi 31986 nmcoplbi 31990 nmbdfnlbi 32011 nmcfnlbi 32014 nmopcoi 32057 unierri 32066 leoprf2 32089 leoprf 32090 stle0i 32201 fzo0opth 32761 m1pmeq 33531 xrge0iifcnv 33902 xrge0iifiso 33904 xrge0iifhom 33906 esumrnmpt2 34037 dstfrvclim1 34448 ballotlemrc 34501 signsply0 34521 chtvalz 34599 poimirlem23 37625 mblfinlem2 37640 itg2addnclem 37653 itg2gt0cn 37657 ibladdnclem 37658 itgaddnclem2 37661 iblabsnc 37666 iblmulc2nc 37667 ftc1anclem5 37679 ftc1anclem7 37681 ftc1anclem8 37682 ftc1anc 37683 areacirclem1 37690 areacirclem4 37693 mettrifi 37739 aks6d1c1 42092 bcled 42154 bcle2d 42155 readvrec2 42337 monotoddzzfi 42918 rmxypos 42923 rmygeid 42940 stoweidlem55 46040 fourierdlem14 46106 fourierdlem20 46112 fourierdlem92 46183 fourierdlem93 46184 fouriersw 46216 isomennd 46516 ovnssle 46546 hoidmvlelem3 46582 ovnhoilem1 46586 nnlog2ge0lt1 48555 dig1 48597 sepfsepc 48916 seppcld 48918 ex-gte 49718 |
| Copyright terms: Public domain | W3C validator |