| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11114 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 11651 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5091 0cc0 11006 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: nn0ledivnn 13005 xsubge0 13160 xmulge0 13183 0e0icopnf 13358 0e0iccpnf 13359 0elunit 13369 0mod 13806 sqlecan 14116 discr 14147 cnpart 15147 sqrt0 15148 resqrex 15157 sqrt00 15170 fsumabs 15708 rpnnen2lem4 16126 divalglem7 16310 pcmptdvds 16806 prmreclem4 16831 prmreclem5 16832 prmreclem6 16833 ramz2 16936 ramz 16937 isabvd 20728 prdsxmetlem 24284 metustto 24469 cfilucfil 24475 nmolb2d 24634 nmoi 24644 nmoix 24645 nmoleub 24647 nmo0 24651 pcoval1 24941 pco0 24942 minveclem7 25363 ovolfiniun 25430 ovolicc1 25445 ioorf 25502 itg1ge0a 25640 mbfi1fseqlem5 25648 itg2const 25669 itg2const2 25670 itg2splitlem 25677 itg2cnlem1 25690 itg2cnlem2 25691 iblss 25734 itgle 25739 ibladdlem 25749 iblabs 25758 iblabsr 25759 iblmulc2 25760 bddmulibl 25768 bddiblnc 25771 c1lip1 25930 dveq0 25933 dv11cn 25934 fta1g 26103 abelthlem2 26370 sinq12ge0 26445 cxpge0 26620 abscxp2 26630 log2ublem3 26886 chtwordi 27094 ppiwordi 27100 chpub 27159 bposlem1 27223 bposlem6 27228 dchrisum0flblem2 27448 qabvle 27564 ostth2lem2 27573 colinearalg 28889 eucrct2eupth 30223 ex-po 30413 nvz0 30646 nmlnoubi 30774 nmblolbii 30777 blocnilem 30782 siilem2 30830 minvecolem7 30861 pjneli 31701 nmbdoplbi 32002 nmcoplbi 32006 nmbdfnlbi 32027 nmcfnlbi 32030 nmopcoi 32073 unierri 32082 leoprf2 32105 leoprf 32106 stle0i 32217 fzo0opth 32783 m1pmeq 33545 xrge0iifcnv 33944 xrge0iifiso 33946 xrge0iifhom 33948 esumrnmpt2 34079 dstfrvclim1 34489 ballotlemrc 34542 signsply0 34562 chtvalz 34640 poimirlem23 37689 mblfinlem2 37704 itg2addnclem 37717 itg2gt0cn 37721 ibladdnclem 37722 itgaddnclem2 37725 iblabsnc 37730 iblmulc2nc 37731 ftc1anclem5 37743 ftc1anclem7 37745 ftc1anclem8 37746 ftc1anc 37747 areacirclem1 37754 areacirclem4 37757 mettrifi 37803 aks6d1c1 42155 bcled 42217 bcle2d 42218 readvrec2 42400 monotoddzzfi 42981 rmxypos 42986 rmygeid 43003 stoweidlem55 46099 fourierdlem14 46165 fourierdlem20 46171 fourierdlem92 46242 fourierdlem93 46243 fouriersw 46275 isomennd 46575 ovnssle 46605 hoidmvlelem3 46641 ovnhoilem1 46645 nnlog2ge0lt1 48604 dig1 48646 sepfsepc 48965 seppcld 48967 ex-gte 49767 |
| Copyright terms: Public domain | W3C validator |