| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11183 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 11719 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 0cc0 11075 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-addrcl 11136 ax-rnegex 11146 ax-cnre 11148 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: nn0ledivnn 13073 xsubge0 13228 xmulge0 13251 0e0icopnf 13426 0e0iccpnf 13427 0elunit 13437 0mod 13871 sqlecan 14181 discr 14212 cnpart 15213 sqrt0 15214 resqrex 15223 sqrt00 15236 fsumabs 15774 rpnnen2lem4 16192 divalglem7 16376 pcmptdvds 16872 prmreclem4 16897 prmreclem5 16898 prmreclem6 16899 ramz2 17002 ramz 17003 isabvd 20728 prdsxmetlem 24263 metustto 24448 cfilucfil 24454 nmolb2d 24613 nmoi 24623 nmoix 24624 nmoleub 24626 nmo0 24630 pcoval1 24920 pco0 24921 minveclem7 25342 ovolfiniun 25409 ovolicc1 25424 ioorf 25481 itg1ge0a 25619 mbfi1fseqlem5 25627 itg2const 25648 itg2const2 25649 itg2splitlem 25656 itg2cnlem1 25669 itg2cnlem2 25670 iblss 25713 itgle 25718 ibladdlem 25728 iblabs 25737 iblabsr 25738 iblmulc2 25739 bddmulibl 25747 bddiblnc 25750 c1lip1 25909 dveq0 25912 dv11cn 25913 fta1g 26082 abelthlem2 26349 sinq12ge0 26424 cxpge0 26599 abscxp2 26609 log2ublem3 26865 chtwordi 27073 ppiwordi 27079 chpub 27138 bposlem1 27202 bposlem6 27207 dchrisum0flblem2 27427 qabvle 27543 ostth2lem2 27552 colinearalg 28844 eucrct2eupth 30181 ex-po 30371 nvz0 30604 nmlnoubi 30732 nmblolbii 30735 blocnilem 30740 siilem2 30788 minvecolem7 30819 pjneli 31659 nmbdoplbi 31960 nmcoplbi 31964 nmbdfnlbi 31985 nmcfnlbi 31988 nmopcoi 32031 unierri 32040 leoprf2 32063 leoprf 32064 stle0i 32175 fzo0opth 32735 m1pmeq 33559 xrge0iifcnv 33930 xrge0iifiso 33932 xrge0iifhom 33934 esumrnmpt2 34065 dstfrvclim1 34476 ballotlemrc 34529 signsply0 34549 chtvalz 34627 poimirlem23 37644 mblfinlem2 37659 itg2addnclem 37672 itg2gt0cn 37676 ibladdnclem 37677 itgaddnclem2 37680 iblabsnc 37685 iblmulc2nc 37686 ftc1anclem5 37698 ftc1anclem7 37700 ftc1anclem8 37701 ftc1anc 37702 areacirclem1 37709 areacirclem4 37712 mettrifi 37758 aks6d1c1 42111 bcled 42173 bcle2d 42174 readvrec2 42356 monotoddzzfi 42938 rmxypos 42943 rmygeid 42960 stoweidlem55 46060 fourierdlem14 46126 fourierdlem20 46132 fourierdlem92 46203 fourierdlem93 46204 fouriersw 46236 isomennd 46536 ovnssle 46566 hoidmvlelem3 46602 ovnhoilem1 46606 nnlog2ge0lt1 48559 dig1 48601 sepfsepc 48920 seppcld 48922 ex-gte 49722 |
| Copyright terms: Public domain | W3C validator |