Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version |
Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0le0 | ⊢ 0 ≤ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11027 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | leidi 11559 | 1 ⊢ 0 ≤ 0 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5081 0cc0 10921 ≤ cle 11060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-resscn 10978 ax-1cn 10979 ax-addrcl 10982 ax-rnegex 10992 ax-cnre 10994 ax-pre-lttri 10995 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rab 3306 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-mpt 5165 df-id 5500 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-er 8529 df-en 8765 df-dom 8766 df-sdom 8767 df-pnf 11061 df-mnf 11062 df-xr 11063 df-ltxr 11064 df-le 11065 |
This theorem is referenced by: nn0ledivnn 12893 xsubge0 13045 xmulge0 13068 0e0icopnf 13240 0e0iccpnf 13241 0elunit 13251 0mod 13672 sqlecan 13975 discr 14005 cnpart 15000 sqr0lem 15001 resqrex 15011 sqrt00 15024 fsumabs 15562 rpnnen2lem4 15975 divalglem7 16157 pcmptdvds 16644 prmreclem4 16669 prmreclem5 16670 prmreclem6 16671 ramz2 16774 ramz 16775 isabvd 20129 prdsxmetlem 23570 metustto 23758 cfilucfil 23764 nmolb2d 23931 nmoi 23941 nmoix 23942 nmoleub 23944 nmo0 23948 pcoval1 24225 pco0 24226 minveclem7 24648 ovolfiniun 24714 ovolicc1 24729 ioorf 24786 itg1ge0a 24925 mbfi1fseqlem5 24933 itg2const 24954 itg2const2 24955 itg2splitlem 24962 itg2cnlem1 24975 itg2cnlem2 24976 iblss 25018 itgle 25023 ibladdlem 25033 iblabs 25042 iblabsr 25043 iblmulc2 25044 bddmulibl 25052 bddiblnc 25055 c1lip1 25210 dveq0 25213 dv11cn 25214 fta1g 25381 abelthlem2 25640 sinq12ge0 25714 cxpge0 25887 abscxp2 25897 log2ublem3 26147 chtwordi 26354 ppiwordi 26360 chpub 26417 bposlem1 26481 bposlem6 26486 dchrisum0flblem2 26706 qabvle 26822 ostth2lem2 26831 colinearalg 27327 eucrct2eupth 28658 ex-po 28848 nvz0 29079 nmlnoubi 29207 nmblolbii 29210 blocnilem 29215 siilem2 29263 minvecolem7 29294 pjneli 30134 nmbdoplbi 30435 nmcoplbi 30439 nmbdfnlbi 30460 nmcfnlbi 30463 nmopcoi 30506 unierri 30515 leoprf2 30538 leoprf 30539 stle0i 30650 xrge0iifcnv 31932 xrge0iifiso 31934 xrge0iifhom 31936 esumrnmpt2 32085 dstfrvclim1 32493 ballotlemrc 32546 signsply0 32579 chtvalz 32658 poimirlem23 35848 mblfinlem2 35863 itg2addnclem 35876 itg2gt0cn 35880 ibladdnclem 35881 itgaddnclem2 35884 iblabsnc 35889 iblmulc2nc 35890 ftc1anclem5 35902 ftc1anclem7 35904 ftc1anclem8 35905 ftc1anc 35906 areacirclem1 35913 areacirclem4 35916 mettrifi 35963 monotoddzzfi 40960 rmxypos 40965 rmygeid 40982 stoweidlem55 43825 fourierdlem14 43891 fourierdlem20 43897 fourierdlem92 43968 fourierdlem93 43969 fouriersw 44001 isomennd 44299 ovnssle 44329 hoidmvlelem3 44365 ovnhoilem1 44369 nnlog2ge0lt1 46156 dig1 46198 sepfsepc 46465 seppcld 46467 ex-gte 46675 |
Copyright terms: Public domain | W3C validator |