| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11237 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 11771 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5119 0cc0 11129 ≤ cle 11270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-resscn 11186 ax-1cn 11187 ax-addrcl 11190 ax-rnegex 11200 ax-cnre 11202 ax-pre-lttri 11203 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 |
| This theorem is referenced by: nn0ledivnn 13122 xsubge0 13277 xmulge0 13300 0e0icopnf 13475 0e0iccpnf 13476 0elunit 13486 0mod 13919 sqlecan 14227 discr 14258 cnpart 15259 sqrt0 15260 resqrex 15269 sqrt00 15282 fsumabs 15817 rpnnen2lem4 16235 divalglem7 16418 pcmptdvds 16914 prmreclem4 16939 prmreclem5 16940 prmreclem6 16941 ramz2 17044 ramz 17045 isabvd 20772 prdsxmetlem 24307 metustto 24492 cfilucfil 24498 nmolb2d 24657 nmoi 24667 nmoix 24668 nmoleub 24670 nmo0 24674 pcoval1 24964 pco0 24965 minveclem7 25387 ovolfiniun 25454 ovolicc1 25469 ioorf 25526 itg1ge0a 25664 mbfi1fseqlem5 25672 itg2const 25693 itg2const2 25694 itg2splitlem 25701 itg2cnlem1 25714 itg2cnlem2 25715 iblss 25758 itgle 25763 ibladdlem 25773 iblabs 25782 iblabsr 25783 iblmulc2 25784 bddmulibl 25792 bddiblnc 25795 c1lip1 25954 dveq0 25957 dv11cn 25958 fta1g 26127 abelthlem2 26394 sinq12ge0 26469 cxpge0 26644 abscxp2 26654 log2ublem3 26910 chtwordi 27118 ppiwordi 27124 chpub 27183 bposlem1 27247 bposlem6 27252 dchrisum0flblem2 27472 qabvle 27588 ostth2lem2 27597 colinearalg 28889 eucrct2eupth 30226 ex-po 30416 nvz0 30649 nmlnoubi 30777 nmblolbii 30780 blocnilem 30785 siilem2 30833 minvecolem7 30864 pjneli 31704 nmbdoplbi 32005 nmcoplbi 32009 nmbdfnlbi 32030 nmcfnlbi 32033 nmopcoi 32076 unierri 32085 leoprf2 32108 leoprf 32109 stle0i 32220 fzo0opth 32782 m1pmeq 33596 xrge0iifcnv 33964 xrge0iifiso 33966 xrge0iifhom 33968 esumrnmpt2 34099 dstfrvclim1 34510 ballotlemrc 34563 signsply0 34583 chtvalz 34661 poimirlem23 37667 mblfinlem2 37682 itg2addnclem 37695 itg2gt0cn 37699 ibladdnclem 37700 itgaddnclem2 37703 iblabsnc 37708 iblmulc2nc 37709 ftc1anclem5 37721 ftc1anclem7 37723 ftc1anclem8 37724 ftc1anc 37725 areacirclem1 37732 areacirclem4 37735 mettrifi 37781 aks6d1c1 42129 bcled 42191 bcle2d 42192 readvrec2 42404 monotoddzzfi 42966 rmxypos 42971 rmygeid 42988 stoweidlem55 46084 fourierdlem14 46150 fourierdlem20 46156 fourierdlem92 46227 fourierdlem93 46228 fouriersw 46260 isomennd 46560 ovnssle 46590 hoidmvlelem3 46626 ovnhoilem1 46630 nnlog2ge0lt1 48546 dig1 48588 sepfsepc 48902 seppcld 48904 ex-gte 49593 |
| Copyright terms: Public domain | W3C validator |