Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version |
Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0le0 | ⊢ 0 ≤ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 10961 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | leidi 11492 | 1 ⊢ 0 ≤ 0 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5078 0cc0 10855 ≤ cle 10994 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-resscn 10912 ax-1cn 10913 ax-addrcl 10916 ax-rnegex 10926 ax-cnre 10928 ax-pre-lttri 10929 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 |
This theorem is referenced by: nn0ledivnn 12825 xsubge0 12977 xmulge0 13000 0e0icopnf 13172 0e0iccpnf 13173 0elunit 13183 0mod 13603 sqlecan 13906 discr 13936 cnpart 14932 sqr0lem 14933 resqrex 14943 sqrt00 14956 fsumabs 15494 rpnnen2lem4 15907 divalglem7 16089 pcmptdvds 16576 prmreclem4 16601 prmreclem5 16602 prmreclem6 16603 ramz2 16706 ramz 16707 isabvd 20061 prdsxmetlem 23502 metustto 23690 cfilucfil 23696 nmolb2d 23863 nmoi 23873 nmoix 23874 nmoleub 23876 nmo0 23880 pcoval1 24157 pco0 24158 minveclem7 24580 ovolfiniun 24646 ovolicc1 24661 ioorf 24718 itg1ge0a 24857 mbfi1fseqlem5 24865 itg2const 24886 itg2const2 24887 itg2splitlem 24894 itg2cnlem1 24907 itg2cnlem2 24908 iblss 24950 itgle 24955 ibladdlem 24965 iblabs 24974 iblabsr 24975 iblmulc2 24976 bddmulibl 24984 bddiblnc 24987 c1lip1 25142 dveq0 25145 dv11cn 25146 fta1g 25313 abelthlem2 25572 sinq12ge0 25646 cxpge0 25819 abscxp2 25829 log2ublem3 26079 chtwordi 26286 ppiwordi 26292 chpub 26349 bposlem1 26413 bposlem6 26418 dchrisum0flblem2 26638 qabvle 26754 ostth2lem2 26763 colinearalg 27259 eucrct2eupth 28588 ex-po 28778 nvz0 29009 nmlnoubi 29137 nmblolbii 29140 blocnilem 29145 siilem2 29193 minvecolem7 29224 pjneli 30064 nmbdoplbi 30365 nmcoplbi 30369 nmbdfnlbi 30390 nmcfnlbi 30393 nmopcoi 30436 unierri 30445 leoprf2 30468 leoprf 30469 stle0i 30580 xrge0iifcnv 31862 xrge0iifiso 31864 xrge0iifhom 31866 esumrnmpt2 32015 dstfrvclim1 32423 ballotlemrc 32476 signsply0 32509 chtvalz 32588 poimirlem23 35779 mblfinlem2 35794 itg2addnclem 35807 itg2gt0cn 35811 ibladdnclem 35812 itgaddnclem2 35815 iblabsnc 35820 iblmulc2nc 35821 ftc1anclem5 35833 ftc1anclem7 35835 ftc1anclem8 35836 ftc1anc 35837 areacirclem1 35844 areacirclem4 35847 mettrifi 35894 monotoddzzfi 40744 rmxypos 40749 rmygeid 40766 stoweidlem55 43550 fourierdlem14 43616 fourierdlem20 43622 fourierdlem92 43693 fourierdlem93 43694 fouriersw 43726 isomennd 44023 ovnssle 44053 hoidmvlelem3 44089 ovnhoilem1 44093 nnlog2ge0lt1 45864 dig1 45906 sepfsepc 46173 seppcld 46175 ex-gte 46383 |
Copyright terms: Public domain | W3C validator |