![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version |
Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0le0 | ⊢ 0 ≤ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11292 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | leidi 11824 | 1 ⊢ 0 ≤ 0 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 0cc0 11184 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: nn0ledivnn 13170 xsubge0 13323 xmulge0 13346 0e0icopnf 13518 0e0iccpnf 13519 0elunit 13529 0mod 13953 sqlecan 14258 discr 14289 cnpart 15289 sqrt0 15290 resqrex 15299 sqrt00 15312 fsumabs 15849 rpnnen2lem4 16265 divalglem7 16447 pcmptdvds 16941 prmreclem4 16966 prmreclem5 16967 prmreclem6 16968 ramz2 17071 ramz 17072 isabvd 20835 prdsxmetlem 24399 metustto 24587 cfilucfil 24593 nmolb2d 24760 nmoi 24770 nmoix 24771 nmoleub 24773 nmo0 24777 pcoval1 25065 pco0 25066 minveclem7 25488 ovolfiniun 25555 ovolicc1 25570 ioorf 25627 itg1ge0a 25766 mbfi1fseqlem5 25774 itg2const 25795 itg2const2 25796 itg2splitlem 25803 itg2cnlem1 25816 itg2cnlem2 25817 iblss 25860 itgle 25865 ibladdlem 25875 iblabs 25884 iblabsr 25885 iblmulc2 25886 bddmulibl 25894 bddiblnc 25897 c1lip1 26056 dveq0 26059 dv11cn 26060 fta1g 26229 abelthlem2 26494 sinq12ge0 26568 cxpge0 26743 abscxp2 26753 log2ublem3 27009 chtwordi 27217 ppiwordi 27223 chpub 27282 bposlem1 27346 bposlem6 27351 dchrisum0flblem2 27571 qabvle 27687 ostth2lem2 27696 colinearalg 28943 eucrct2eupth 30277 ex-po 30467 nvz0 30700 nmlnoubi 30828 nmblolbii 30831 blocnilem 30836 siilem2 30884 minvecolem7 30915 pjneli 31755 nmbdoplbi 32056 nmcoplbi 32060 nmbdfnlbi 32081 nmcfnlbi 32084 nmopcoi 32127 unierri 32136 leoprf2 32159 leoprf 32160 stle0i 32271 fzo0opth 32810 m1pmeq 33573 xrge0iifcnv 33879 xrge0iifiso 33881 xrge0iifhom 33883 esumrnmpt2 34032 dstfrvclim1 34442 ballotlemrc 34495 signsply0 34528 chtvalz 34606 poimirlem23 37603 mblfinlem2 37618 itg2addnclem 37631 itg2gt0cn 37635 ibladdnclem 37636 itgaddnclem2 37639 iblabsnc 37644 iblmulc2nc 37645 ftc1anclem5 37657 ftc1anclem7 37659 ftc1anclem8 37660 ftc1anc 37661 areacirclem1 37668 areacirclem4 37671 mettrifi 37717 aks6d1c1 42073 bcled 42135 bcle2d 42136 monotoddzzfi 42899 rmxypos 42904 rmygeid 42921 stoweidlem55 45976 fourierdlem14 46042 fourierdlem20 46048 fourierdlem92 46119 fourierdlem93 46120 fouriersw 46152 isomennd 46452 ovnssle 46482 hoidmvlelem3 46518 ovnhoilem1 46522 nnlog2ge0lt1 48300 dig1 48342 sepfsepc 48607 seppcld 48609 ex-gte 48821 |
Copyright terms: Public domain | W3C validator |