| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11125 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 11662 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5095 0cc0 11017 ≤ cle 11158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-resscn 11074 ax-1cn 11075 ax-addrcl 11078 ax-rnegex 11088 ax-cnre 11090 ax-pre-lttri 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 |
| This theorem is referenced by: nn0ledivnn 13011 xsubge0 13167 xmulge0 13190 0e0icopnf 13365 0e0iccpnf 13366 0elunit 13376 0mod 13813 sqlecan 14123 discr 14154 cnpart 15154 sqrt0 15155 resqrex 15164 sqrt00 15177 fsumabs 15715 rpnnen2lem4 16133 divalglem7 16317 pcmptdvds 16813 prmreclem4 16838 prmreclem5 16839 prmreclem6 16840 ramz2 16943 ramz 16944 isabvd 20736 prdsxmetlem 24303 metustto 24488 cfilucfil 24494 nmolb2d 24653 nmoi 24663 nmoix 24664 nmoleub 24666 nmo0 24670 pcoval1 24960 pco0 24961 minveclem7 25382 ovolfiniun 25449 ovolicc1 25464 ioorf 25521 itg1ge0a 25659 mbfi1fseqlem5 25667 itg2const 25688 itg2const2 25689 itg2splitlem 25696 itg2cnlem1 25709 itg2cnlem2 25710 iblss 25753 itgle 25758 ibladdlem 25768 iblabs 25777 iblabsr 25778 iblmulc2 25779 bddmulibl 25787 bddiblnc 25790 c1lip1 25949 dveq0 25952 dv11cn 25953 fta1g 26122 abelthlem2 26389 sinq12ge0 26464 cxpge0 26639 abscxp2 26649 log2ublem3 26905 chtwordi 27113 ppiwordi 27119 chpub 27178 bposlem1 27242 bposlem6 27247 dchrisum0flblem2 27467 qabvle 27583 ostth2lem2 27592 colinearalg 28909 eucrct2eupth 30246 ex-po 30436 nvz0 30669 nmlnoubi 30797 nmblolbii 30800 blocnilem 30805 siilem2 30853 minvecolem7 30884 pjneli 31724 nmbdoplbi 32025 nmcoplbi 32029 nmbdfnlbi 32050 nmcfnlbi 32053 nmopcoi 32096 unierri 32105 leoprf2 32128 leoprf 32129 stle0i 32240 fzo0opth 32811 m1pmeq 33594 xrge0iifcnv 34018 xrge0iifiso 34020 xrge0iifhom 34022 esumrnmpt2 34153 dstfrvclim1 34563 ballotlemrc 34616 signsply0 34636 chtvalz 34714 poimirlem23 37756 mblfinlem2 37771 itg2addnclem 37784 itg2gt0cn 37788 ibladdnclem 37789 itgaddnclem2 37792 iblabsnc 37797 iblmulc2nc 37798 ftc1anclem5 37810 ftc1anclem7 37812 ftc1anclem8 37813 ftc1anc 37814 areacirclem1 37821 areacirclem4 37824 mettrifi 37870 aks6d1c1 42282 bcled 42344 bcle2d 42345 readvrec2 42531 monotoddzzfi 43099 rmxypos 43104 rmygeid 43121 stoweidlem55 46215 fourierdlem14 46281 fourierdlem20 46287 fourierdlem92 46358 fourierdlem93 46359 fouriersw 46391 isomennd 46691 ovnssle 46721 hoidmvlelem3 46757 ovnhoilem1 46761 chnsubseqwl 47039 nnlog2ge0lt1 48728 dig1 48770 sepfsepc 49089 seppcld 49091 ex-gte 49890 |
| Copyright terms: Public domain | W3C validator |