![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version |
Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
Ref | Expression |
---|---|
0le0 | ⊢ 0 ≤ 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0re 11223 | . 2 ⊢ 0 ∈ ℝ | |
2 | 1 | leidi 11755 | 1 ⊢ 0 ≤ 0 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5148 0cc0 11116 ≤ cle 11256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-resscn 11173 ax-1cn 11174 ax-addrcl 11177 ax-rnegex 11187 ax-cnre 11189 ax-pre-lttri 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 |
This theorem is referenced by: nn0ledivnn 13094 xsubge0 13247 xmulge0 13270 0e0icopnf 13442 0e0iccpnf 13443 0elunit 13453 0mod 13874 sqlecan 14180 discr 14210 cnpart 15194 sqrt0 15195 resqrex 15204 sqrt00 15217 fsumabs 15754 rpnnen2lem4 16167 divalglem7 16349 pcmptdvds 16834 prmreclem4 16859 prmreclem5 16860 prmreclem6 16861 ramz2 16964 ramz 16965 isabvd 20575 prdsxmetlem 24107 metustto 24295 cfilucfil 24301 nmolb2d 24468 nmoi 24478 nmoix 24479 nmoleub 24481 nmo0 24485 pcoval1 24773 pco0 24774 minveclem7 25196 ovolfiniun 25263 ovolicc1 25278 ioorf 25335 itg1ge0a 25474 mbfi1fseqlem5 25482 itg2const 25503 itg2const2 25504 itg2splitlem 25511 itg2cnlem1 25524 itg2cnlem2 25525 iblss 25567 itgle 25572 ibladdlem 25582 iblabs 25591 iblabsr 25592 iblmulc2 25593 bddmulibl 25601 bddiblnc 25604 c1lip1 25763 dveq0 25766 dv11cn 25767 fta1g 25934 abelthlem2 26195 sinq12ge0 26269 cxpge0 26442 abscxp2 26452 log2ublem3 26704 chtwordi 26911 ppiwordi 26917 chpub 26974 bposlem1 27038 bposlem6 27043 dchrisum0flblem2 27263 qabvle 27379 ostth2lem2 27388 colinearalg 28450 eucrct2eupth 29780 ex-po 29970 nvz0 30203 nmlnoubi 30331 nmblolbii 30334 blocnilem 30339 siilem2 30387 minvecolem7 30418 pjneli 31258 nmbdoplbi 31559 nmcoplbi 31563 nmbdfnlbi 31584 nmcfnlbi 31587 nmopcoi 31630 unierri 31639 leoprf2 31662 leoprf 31663 stle0i 31774 xrge0iifcnv 33226 xrge0iifiso 33228 xrge0iifhom 33230 esumrnmpt2 33379 dstfrvclim1 33789 ballotlemrc 33842 signsply0 33875 chtvalz 33954 poimirlem23 36827 mblfinlem2 36842 itg2addnclem 36855 itg2gt0cn 36859 ibladdnclem 36860 itgaddnclem2 36863 iblabsnc 36868 iblmulc2nc 36869 ftc1anclem5 36881 ftc1anclem7 36883 ftc1anclem8 36884 ftc1anc 36885 areacirclem1 36892 areacirclem4 36895 mettrifi 36941 monotoddzzfi 41996 rmxypos 42001 rmygeid 42018 stoweidlem55 45082 fourierdlem14 45148 fourierdlem20 45154 fourierdlem92 45225 fourierdlem93 45226 fouriersw 45258 isomennd 45558 ovnssle 45588 hoidmvlelem3 45624 ovnhoilem1 45628 nnlog2ge0lt1 47352 dig1 47394 sepfsepc 47660 seppcld 47662 ex-gte 47874 |
Copyright terms: Public domain | W3C validator |