| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11176 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 11712 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 0cc0 11068 ≤ cle 11209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-addrcl 11129 ax-rnegex 11139 ax-cnre 11141 ax-pre-lttri 11142 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 |
| This theorem is referenced by: nn0ledivnn 13066 xsubge0 13221 xmulge0 13244 0e0icopnf 13419 0e0iccpnf 13420 0elunit 13430 0mod 13864 sqlecan 14174 discr 14205 cnpart 15206 sqrt0 15207 resqrex 15216 sqrt00 15229 fsumabs 15767 rpnnen2lem4 16185 divalglem7 16369 pcmptdvds 16865 prmreclem4 16890 prmreclem5 16891 prmreclem6 16892 ramz2 16995 ramz 16996 isabvd 20721 prdsxmetlem 24256 metustto 24441 cfilucfil 24447 nmolb2d 24606 nmoi 24616 nmoix 24617 nmoleub 24619 nmo0 24623 pcoval1 24913 pco0 24914 minveclem7 25335 ovolfiniun 25402 ovolicc1 25417 ioorf 25474 itg1ge0a 25612 mbfi1fseqlem5 25620 itg2const 25641 itg2const2 25642 itg2splitlem 25649 itg2cnlem1 25662 itg2cnlem2 25663 iblss 25706 itgle 25711 ibladdlem 25721 iblabs 25730 iblabsr 25731 iblmulc2 25732 bddmulibl 25740 bddiblnc 25743 c1lip1 25902 dveq0 25905 dv11cn 25906 fta1g 26075 abelthlem2 26342 sinq12ge0 26417 cxpge0 26592 abscxp2 26602 log2ublem3 26858 chtwordi 27066 ppiwordi 27072 chpub 27131 bposlem1 27195 bposlem6 27200 dchrisum0flblem2 27420 qabvle 27536 ostth2lem2 27545 colinearalg 28837 eucrct2eupth 30174 ex-po 30364 nvz0 30597 nmlnoubi 30725 nmblolbii 30728 blocnilem 30733 siilem2 30781 minvecolem7 30812 pjneli 31652 nmbdoplbi 31953 nmcoplbi 31957 nmbdfnlbi 31978 nmcfnlbi 31981 nmopcoi 32024 unierri 32033 leoprf2 32056 leoprf 32057 stle0i 32168 fzo0opth 32728 m1pmeq 33552 xrge0iifcnv 33923 xrge0iifiso 33925 xrge0iifhom 33927 esumrnmpt2 34058 dstfrvclim1 34469 ballotlemrc 34522 signsply0 34542 chtvalz 34620 poimirlem23 37637 mblfinlem2 37652 itg2addnclem 37665 itg2gt0cn 37669 ibladdnclem 37670 itgaddnclem2 37673 iblabsnc 37678 iblmulc2nc 37679 ftc1anclem5 37691 ftc1anclem7 37693 ftc1anclem8 37694 ftc1anc 37695 areacirclem1 37702 areacirclem4 37705 mettrifi 37751 aks6d1c1 42104 bcled 42166 bcle2d 42167 readvrec2 42349 monotoddzzfi 42931 rmxypos 42936 rmygeid 42953 stoweidlem55 46053 fourierdlem14 46119 fourierdlem20 46125 fourierdlem92 46196 fourierdlem93 46197 fouriersw 46229 isomennd 46529 ovnssle 46559 hoidmvlelem3 46595 ovnhoilem1 46599 nnlog2ge0lt1 48555 dig1 48597 sepfsepc 48916 seppcld 48918 ex-gte 49718 |
| Copyright terms: Public domain | W3C validator |