| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0le0 | Structured version Visualization version GIF version | ||
| Description: Zero is nonnegative. (Contributed by David A. Wheeler, 7-Jul-2016.) |
| Ref | Expression |
|---|---|
| 0le0 | ⊢ 0 ≤ 0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 11152 | . 2 ⊢ 0 ∈ ℝ | |
| 2 | 1 | leidi 11688 | 1 ⊢ 0 ≤ 0 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 0cc0 11044 ≤ cle 11185 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-resscn 11101 ax-1cn 11102 ax-addrcl 11105 ax-rnegex 11115 ax-cnre 11117 ax-pre-lttri 11118 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 |
| This theorem is referenced by: nn0ledivnn 13042 xsubge0 13197 xmulge0 13220 0e0icopnf 13395 0e0iccpnf 13396 0elunit 13406 0mod 13840 sqlecan 14150 discr 14181 cnpart 15182 sqrt0 15183 resqrex 15192 sqrt00 15205 fsumabs 15743 rpnnen2lem4 16161 divalglem7 16345 pcmptdvds 16841 prmreclem4 16866 prmreclem5 16867 prmreclem6 16868 ramz2 16971 ramz 16972 isabvd 20697 prdsxmetlem 24232 metustto 24417 cfilucfil 24423 nmolb2d 24582 nmoi 24592 nmoix 24593 nmoleub 24595 nmo0 24599 pcoval1 24889 pco0 24890 minveclem7 25311 ovolfiniun 25378 ovolicc1 25393 ioorf 25450 itg1ge0a 25588 mbfi1fseqlem5 25596 itg2const 25617 itg2const2 25618 itg2splitlem 25625 itg2cnlem1 25638 itg2cnlem2 25639 iblss 25682 itgle 25687 ibladdlem 25697 iblabs 25706 iblabsr 25707 iblmulc2 25708 bddmulibl 25716 bddiblnc 25719 c1lip1 25878 dveq0 25881 dv11cn 25882 fta1g 26051 abelthlem2 26318 sinq12ge0 26393 cxpge0 26568 abscxp2 26578 log2ublem3 26834 chtwordi 27042 ppiwordi 27048 chpub 27107 bposlem1 27171 bposlem6 27176 dchrisum0flblem2 27396 qabvle 27512 ostth2lem2 27521 colinearalg 28813 eucrct2eupth 30147 ex-po 30337 nvz0 30570 nmlnoubi 30698 nmblolbii 30701 blocnilem 30706 siilem2 30754 minvecolem7 30785 pjneli 31625 nmbdoplbi 31926 nmcoplbi 31930 nmbdfnlbi 31951 nmcfnlbi 31954 nmopcoi 31997 unierri 32006 leoprf2 32029 leoprf 32030 stle0i 32141 fzo0opth 32701 m1pmeq 33525 xrge0iifcnv 33896 xrge0iifiso 33898 xrge0iifhom 33900 esumrnmpt2 34031 dstfrvclim1 34442 ballotlemrc 34495 signsply0 34515 chtvalz 34593 poimirlem23 37610 mblfinlem2 37625 itg2addnclem 37638 itg2gt0cn 37642 ibladdnclem 37643 itgaddnclem2 37646 iblabsnc 37651 iblmulc2nc 37652 ftc1anclem5 37664 ftc1anclem7 37666 ftc1anclem8 37667 ftc1anc 37668 areacirclem1 37675 areacirclem4 37678 mettrifi 37724 aks6d1c1 42077 bcled 42139 bcle2d 42140 readvrec2 42322 monotoddzzfi 42904 rmxypos 42909 rmygeid 42926 stoweidlem55 46026 fourierdlem14 46092 fourierdlem20 46098 fourierdlem92 46169 fourierdlem93 46170 fouriersw 46202 isomennd 46502 ovnssle 46532 hoidmvlelem3 46568 ovnhoilem1 46572 nnlog2ge0lt1 48528 dig1 48570 sepfsepc 48889 seppcld 48891 ex-gte 49691 |
| Copyright terms: Public domain | W3C validator |