Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  extvfvv Structured version   Visualization version   GIF version

Theorem extvfvv 33585
Description: The "variable extension" function evaluated for converting a given polynomial 𝐹 by adding a variable with index 𝐴. (Contributed by Thierry Arnoux, 25-Jan-2026.)
Hypotheses
Ref Expression
extvval.d 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
extvval.1 0 = (0g𝑅)
extvval.i (𝜑𝐼𝑉)
extvval.r (𝜑𝑅𝑊)
extvfval.a (𝜑𝐴𝐼)
extvfval.j 𝐽 = (𝐼 ∖ {𝐴})
extvfval.m 𝑀 = (Base‘(𝐽 mPoly 𝑅))
extvfv.1 (𝜑𝐹𝑀)
extvfvv.1 (𝜑𝑋𝐷)
Assertion
Ref Expression
extvfvv (𝜑 → ((((𝐼extendVars𝑅)‘𝐴)‘𝐹)‘𝑋) = if((𝑋𝐴) = 0, (𝐹‘(𝑋𝐽)), 0 ))
Distinct variable group:   ,𝐼
Allowed substitution hints:   𝜑()   𝐴()   𝐷()   𝑅()   𝐹()   𝐽()   𝑀()   𝑉()   𝑊()   𝑋()   0 ()

Proof of Theorem extvfvv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fveq1 6827 . . . 4 (𝑥 = 𝑋 → (𝑥𝐴) = (𝑋𝐴))
21eqeq1d 2735 . . 3 (𝑥 = 𝑋 → ((𝑥𝐴) = 0 ↔ (𝑋𝐴) = 0))
3 reseq1 5926 . . . 4 (𝑥 = 𝑋 → (𝑥𝐽) = (𝑋𝐽))
43fveq2d 6832 . . 3 (𝑥 = 𝑋 → (𝐹‘(𝑥𝐽)) = (𝐹‘(𝑋𝐽)))
52, 4ifbieq1d 4499 . 2 (𝑥 = 𝑋 → if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 ) = if((𝑋𝐴) = 0, (𝐹‘(𝑋𝐽)), 0 ))
6 extvval.d . . 3 𝐷 = { ∈ (ℕ0m 𝐼) ∣ finSupp 0}
7 extvval.1 . . 3 0 = (0g𝑅)
8 extvval.i . . 3 (𝜑𝐼𝑉)
9 extvval.r . . 3 (𝜑𝑅𝑊)
10 extvfval.a . . 3 (𝜑𝐴𝐼)
11 extvfval.j . . 3 𝐽 = (𝐼 ∖ {𝐴})
12 extvfval.m . . 3 𝑀 = (Base‘(𝐽 mPoly 𝑅))
13 extvfv.1 . . 3 (𝜑𝐹𝑀)
146, 7, 8, 9, 10, 11, 12, 13extvfv 33584 . 2 (𝜑 → (((𝐼extendVars𝑅)‘𝐴)‘𝐹) = (𝑥𝐷 ↦ if((𝑥𝐴) = 0, (𝐹‘(𝑥𝐽)), 0 )))
15 extvfvv.1 . 2 (𝜑𝑋𝐷)
16 fvexd 6843 . . 3 (𝜑 → (𝐹‘(𝑋𝐽)) ∈ V)
177fvexi 6842 . . . 4 0 ∈ V
1817a1i 11 . . 3 (𝜑0 ∈ V)
1916, 18ifcld 4521 . 2 (𝜑 → if((𝑋𝐴) = 0, (𝐹‘(𝑋𝐽)), 0 ) ∈ V)
205, 14, 15, 19fvmptd4 6959 1 (𝜑 → ((((𝐼extendVars𝑅)‘𝐴)‘𝐹)‘𝑋) = if((𝑋𝐴) = 0, (𝐹‘(𝑋𝐽)), 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  Vcvv 3437  cdif 3895  ifcif 4474  {csn 4575   class class class wbr 5093  cres 5621  cfv 6486  (class class class)co 7352  m cmap 8756   finSupp cfsupp 9252  0cc0 11013  0cn0 12388  Basecbs 17122  0gc0g 17345   mPoly cmpl 21845  extendVarscextv 33580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-extv 33581
This theorem is referenced by:  extvfvvcl  33586  esplyind  33613
  Copyright terms: Public domain W3C validator