MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsss1 Structured version   Visualization version   GIF version

Theorem fclsss1 22627
Description: A finer topology has fewer cluster points. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Assertion
Ref Expression
fclsss1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fClus 𝐹) ⊆ (𝐽 fClus 𝐹))

Proof of Theorem fclsss1
Dummy variables 𝑜 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl3 1190 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐽𝐾)
2 ssralv 3981 . . . . . . 7 (𝐽𝐾 → (∀𝑜𝐾 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅) → ∀𝑜𝐽 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)))
32anim2d 614 . . . . . 6 (𝐽𝐾 → ((𝑥𝑋 ∧ ∀𝑜𝐾 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)) → (𝑥𝑋 ∧ ∀𝑜𝐽 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
41, 3syl 17 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → ((𝑥𝑋 ∧ ∀𝑜𝐾 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅)) → (𝑥𝑋 ∧ ∀𝑜𝐽 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
5 simpl2 1189 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐹 ∈ (Fil‘𝑋))
6 fclstopon 22617 . . . . . . . 8 (𝑥 ∈ (𝐾 fClus 𝐹) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
76adantl 485 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋)))
85, 7mpbird 260 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐾 ∈ (TopOn‘𝑋))
9 fclsopn 22619 . . . . . 6 ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐾 fClus 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑜𝐾 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
108, 5, 9syl2anc 587 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝑥 ∈ (𝐾 fClus 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑜𝐾 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
11 simpl1 1188 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋))
12 fclsopn 22619 . . . . . 6 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑜𝐽 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
1311, 5, 12syl2anc 587 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥𝑋 ∧ ∀𝑜𝐽 (𝑥𝑜 → ∀𝑠𝐹 (𝑜𝑠) ≠ ∅))))
144, 10, 133imtr4d 297 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝑥 ∈ (𝐾 fClus 𝐹) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1514ex 416 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝐾 fClus 𝐹) → (𝑥 ∈ (𝐾 fClus 𝐹) → 𝑥 ∈ (𝐽 fClus 𝐹))))
1615pm2.43d 53 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝑥 ∈ (𝐾 fClus 𝐹) → 𝑥 ∈ (𝐽 fClus 𝐹)))
1716ssrdv 3921 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽𝐾) → (𝐾 fClus 𝐹) ⊆ (𝐽 fClus 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wcel 2111  wne 2987  wral 3106  cin 3880  wss 3881  c0 4243  cfv 6324  (class class class)co 7135  TopOnctopon 21515  Filcfil 22450   fClus cfcls 22541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-fbas 20088  df-top 21499  df-topon 21516  df-cld 21624  df-ntr 21625  df-cls 21626  df-fil 22451  df-fcls 22546
This theorem is referenced by:  fclscf  22630
  Copyright terms: Public domain W3C validator