| Step | Hyp | Ref
| Expression |
| 1 | | simpl3 1194 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐽 ⊆ 𝐾) |
| 2 | | ssralv 4032 |
. . . . . . 7
⊢ (𝐽 ⊆ 𝐾 → (∀𝑜 ∈ 𝐾 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅) → ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅))) |
| 3 | 2 | anim2d 612 |
. . . . . 6
⊢ (𝐽 ⊆ 𝐾 → ((𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐾 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) → (𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 4 | 1, 3 | syl 17 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → ((𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐾 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)) → (𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 5 | | simpl2 1193 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐹 ∈ (Fil‘𝑋)) |
| 6 | | fclstopon 23955 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝐾 fClus 𝐹) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
| 7 | 6 | adantl 481 |
. . . . . . 7
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝐾 ∈ (TopOn‘𝑋) ↔ 𝐹 ∈ (Fil‘𝑋))) |
| 8 | 5, 7 | mpbird 257 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐾 ∈ (TopOn‘𝑋)) |
| 9 | | fclsopn 23957 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐾 fClus 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐾 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 10 | 8, 5, 9 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝑥 ∈ (𝐾 fClus 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐾 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 11 | | simpl1 1192 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → 𝐽 ∈ (TopOn‘𝑋)) |
| 12 | | fclsopn 23957 |
. . . . . 6
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 13 | 11, 5, 12 | syl2anc 584 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝑥 ∈ (𝐽 fClus 𝐹) ↔ (𝑥 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝑥 ∈ 𝑜 → ∀𝑠 ∈ 𝐹 (𝑜 ∩ 𝑠) ≠ ∅)))) |
| 14 | 4, 10, 13 | 3imtr4d 294 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) ∧ 𝑥 ∈ (𝐾 fClus 𝐹)) → (𝑥 ∈ (𝐾 fClus 𝐹) → 𝑥 ∈ (𝐽 fClus 𝐹))) |
| 15 | 14 | ex 412 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐾 fClus 𝐹) → (𝑥 ∈ (𝐾 fClus 𝐹) → 𝑥 ∈ (𝐽 fClus 𝐹)))) |
| 16 | 15 | pm2.43d 53 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝑥 ∈ (𝐾 fClus 𝐹) → 𝑥 ∈ (𝐽 fClus 𝐹))) |
| 17 | 16 | ssrdv 3969 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋) ∧ 𝐽 ⊆ 𝐾) → (𝐾 fClus 𝐹) ⊆ (𝐽 fClus 𝐹)) |