Step | Hyp | Ref
| Expression |
1 | | simpl3 1191 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β π½ β πΎ) |
2 | | ssralv 4049 |
. . . . . . 7
β’ (π½ β πΎ β (βπ β πΎ (π₯ β π β βπ β πΉ (π β© π ) β β
) β βπ β π½ (π₯ β π β βπ β πΉ (π β© π ) β β
))) |
3 | 2 | anim2d 610 |
. . . . . 6
β’ (π½ β πΎ β ((π₯ β π β§ βπ β πΎ (π₯ β π β βπ β πΉ (π β© π ) β β
)) β (π₯ β π β§ βπ β π½ (π₯ β π β βπ β πΉ (π β© π ) β β
)))) |
4 | 1, 3 | syl 17 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β ((π₯ β π β§ βπ β πΎ (π₯ β π β βπ β πΉ (π β© π ) β β
)) β (π₯ β π β§ βπ β π½ (π₯ β π β βπ β πΉ (π β© π ) β β
)))) |
5 | | simpl2 1190 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β πΉ β (Filβπ)) |
6 | | fclstopon 23736 |
. . . . . . . 8
β’ (π₯ β (πΎ fClus πΉ) β (πΎ β (TopOnβπ) β πΉ β (Filβπ))) |
7 | 6 | adantl 480 |
. . . . . . 7
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β (πΎ β (TopOnβπ) β πΉ β (Filβπ))) |
8 | 5, 7 | mpbird 256 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β πΎ β (TopOnβπ)) |
9 | | fclsopn 23738 |
. . . . . 6
β’ ((πΎ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π₯ β (πΎ fClus πΉ) β (π₯ β π β§ βπ β πΎ (π₯ β π β βπ β πΉ (π β© π ) β β
)))) |
10 | 8, 5, 9 | syl2anc 582 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β (π₯ β (πΎ fClus πΉ) β (π₯ β π β§ βπ β πΎ (π₯ β π β βπ β πΉ (π β© π ) β β
)))) |
11 | | simpl1 1189 |
. . . . . 6
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β π½ β (TopOnβπ)) |
12 | | fclsopn 23738 |
. . . . . 6
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ)) β (π₯ β (π½ fClus πΉ) β (π₯ β π β§ βπ β π½ (π₯ β π β βπ β πΉ (π β© π ) β β
)))) |
13 | 11, 5, 12 | syl2anc 582 |
. . . . 5
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β (π₯ β (π½ fClus πΉ) β (π₯ β π β§ βπ β π½ (π₯ β π β βπ β πΉ (π β© π ) β β
)))) |
14 | 4, 10, 13 | 3imtr4d 293 |
. . . 4
β’ (((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β§ π₯ β (πΎ fClus πΉ)) β (π₯ β (πΎ fClus πΉ) β π₯ β (π½ fClus πΉ))) |
15 | 14 | ex 411 |
. . 3
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β (π₯ β (πΎ fClus πΉ) β (π₯ β (πΎ fClus πΉ) β π₯ β (π½ fClus πΉ)))) |
16 | 15 | pm2.43d 53 |
. 2
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β (π₯ β (πΎ fClus πΉ) β π₯ β (π½ fClus πΉ))) |
17 | 16 | ssrdv 3987 |
1
β’ ((π½ β (TopOnβπ) β§ πΉ β (Filβπ) β§ π½ β πΎ) β (πΎ fClus πΉ) β (π½ fClus πΉ)) |