Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivval | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
Ref | Expression |
---|---|
fdivval | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fdiv 45884 | . . 3 ⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)))) |
3 | oveq12 7284 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∘f / 𝑔) = (𝐹 ∘f / 𝐺)) | |
4 | oveq1 7282 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0)) | |
5 | 4 | adantl 482 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0)) |
6 | 3, 5 | reseq12d 5892 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
7 | 6 | adantl 482 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
8 | elex 3450 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
10 | elex 3450 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
11 | 10 | adantl 482 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
12 | funmpt 6472 | . . . 4 ⊢ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
13 | offval3 7825 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
14 | 13 | funeqd 6456 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (Fun (𝐹 ∘f / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
15 | 12, 14 | mpbiri 257 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝐹 ∘f / 𝐺)) |
16 | ovex 7308 | . . 3 ⊢ (𝐺 supp 0) ∈ V | |
17 | resfunexg 7091 | . . 3 ⊢ ((Fun (𝐹 ∘f / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) | |
18 | 15, 16, 17 | sylancl 586 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) |
19 | 2, 7, 9, 11, 18 | ovmpod 7425 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ↦ cmpt 5157 dom cdm 5589 ↾ cres 5591 Fun wfun 6427 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ∘f cof 7531 supp csupp 7977 0cc0 10871 / cdiv 11632 /f cfdiv 45883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-fdiv 45884 |
This theorem is referenced by: fdivmpt 45886 |
Copyright terms: Public domain | W3C validator |