Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivval Structured version   Visualization version   GIF version

Theorem fdivval 46873
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
fdivval ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))

Proof of Theorem fdivval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fdiv 46872 . . 3 /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0)))
21a1i 11 . 2 ((𝐹𝑉𝐺𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0))))
3 oveq12 7402 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓f / 𝑔) = (𝐹f / 𝐺))
4 oveq1 7400 . . . . 5 (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0))
54adantl 482 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0))
63, 5reseq12d 5974 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
76adantl 482 . 2 (((𝐹𝑉𝐺𝑊) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
8 elex 3491 . . 3 (𝐹𝑉𝐹 ∈ V)
98adantr 481 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
10 elex 3491 . . 3 (𝐺𝑊𝐺 ∈ V)
1110adantl 482 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
12 funmpt 6575 . . . 4 Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))
13 offval3 7951 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹f / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥))))
1413funeqd 6559 . . . 4 ((𝐹𝑉𝐺𝑊) → (Fun (𝐹f / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))))
1512, 14mpbiri 257 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝐹f / 𝐺))
16 ovex 7426 . . 3 (𝐺 supp 0) ∈ V
17 resfunexg 7201 . . 3 ((Fun (𝐹f / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
1815, 16, 17sylancl 586 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
192, 7, 9, 11, 18ovmpod 7543 1 ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3473  cin 3943  cmpt 5224  dom cdm 5669  cres 5671  Fun wfun 6526  cfv 6532  (class class class)co 7393  cmpo 7395  f cof 7651   supp csupp 8128  0cc0 11092   / cdiv 11853   /f cfdiv 46871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-fdiv 46872
This theorem is referenced by:  fdivmpt  46874
  Copyright terms: Public domain W3C validator