| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivval | Structured version Visualization version GIF version | ||
| Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
| Ref | Expression |
|---|---|
| fdivval | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fdiv 48393 | . . 3 ⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)))) |
| 3 | oveq12 7421 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∘f / 𝑔) = (𝐹 ∘f / 𝐺)) | |
| 4 | oveq1 7419 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0)) |
| 6 | 3, 5 | reseq12d 5978 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| 8 | elex 3484 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
| 10 | elex 3484 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
| 12 | funmpt 6583 | . . . 4 ⊢ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
| 13 | offval3 7988 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
| 14 | 13 | funeqd 6567 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (Fun (𝐹 ∘f / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
| 15 | 12, 14 | mpbiri 258 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝐹 ∘f / 𝐺)) |
| 16 | ovex 7445 | . . 3 ⊢ (𝐺 supp 0) ∈ V | |
| 17 | resfunexg 7216 | . . 3 ⊢ ((Fun (𝐹 ∘f / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) | |
| 18 | 15, 16, 17 | sylancl 586 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) |
| 19 | 2, 7, 9, 11, 18 | ovmpod 7566 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 ↦ cmpt 5205 dom cdm 5665 ↾ cres 5667 Fun wfun 6534 ‘cfv 6540 (class class class)co 7412 ∈ cmpo 7414 ∘f cof 7676 supp csupp 8166 0cc0 11136 / cdiv 11901 /f cfdiv 48392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7678 df-fdiv 48393 |
| This theorem is referenced by: fdivmpt 48395 |
| Copyright terms: Public domain | W3C validator |