![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivval | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
Ref | Expression |
---|---|
fdivval | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘𝑓 / 𝐺) ↾ (𝐺 supp 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fdiv 43964 | . . 3 ⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘𝑓 / 𝑔) ↾ (𝑔 supp 0))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘𝑓 / 𝑔) ↾ (𝑔 supp 0)))) |
3 | oveq12 6985 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∘𝑓 / 𝑔) = (𝐹 ∘𝑓 / 𝐺)) | |
4 | oveq1 6983 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0)) | |
5 | 4 | adantl 474 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0)) |
6 | 3, 5 | reseq12d 5696 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓 ∘𝑓 / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘𝑓 / 𝐺) ↾ (𝐺 supp 0))) |
7 | 6 | adantl 474 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ((𝑓 ∘𝑓 / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘𝑓 / 𝐺) ↾ (𝐺 supp 0))) |
8 | elex 3434 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
9 | 8 | adantr 473 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
10 | elex 3434 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
11 | 10 | adantl 474 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
12 | funmpt 6226 | . . . 4 ⊢ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
13 | offval0 43930 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘𝑓 / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
14 | 13 | funeqd 6210 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (Fun (𝐹 ∘𝑓 / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
15 | 12, 14 | mpbiri 250 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝐹 ∘𝑓 / 𝐺)) |
16 | ovex 7008 | . . 3 ⊢ (𝐺 supp 0) ∈ V | |
17 | resfunexg 6804 | . . 3 ⊢ ((Fun (𝐹 ∘𝑓 / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹 ∘𝑓 / 𝐺) ↾ (𝐺 supp 0)) ∈ V) | |
18 | 15, 16, 17 | sylancl 577 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘𝑓 / 𝐺) ↾ (𝐺 supp 0)) ∈ V) |
19 | 2, 7, 9, 11, 18 | ovmpod 7118 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘𝑓 / 𝐺) ↾ (𝐺 supp 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 Vcvv 3416 ∩ cin 3829 ↦ cmpt 5008 dom cdm 5407 ↾ cres 5409 Fun wfun 6182 ‘cfv 6188 (class class class)co 6976 ∈ cmpo 6978 ∘𝑓 cof 7225 supp csupp 7633 0cc0 10335 / cdiv 11098 /f cfdiv 43963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-ov 6979 df-oprab 6980 df-mpo 6981 df-of 7227 df-fdiv 43964 |
This theorem is referenced by: fdivmpt 43966 |
Copyright terms: Public domain | W3C validator |