Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivval Structured version   Visualization version   GIF version

Theorem fdivval 48394
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
fdivval ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))

Proof of Theorem fdivval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fdiv 48393 . . 3 /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0)))
21a1i 11 . 2 ((𝐹𝑉𝐺𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0))))
3 oveq12 7421 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓f / 𝑔) = (𝐹f / 𝐺))
4 oveq1 7419 . . . . 5 (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0))
54adantl 481 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0))
63, 5reseq12d 5978 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
76adantl 481 . 2 (((𝐹𝑉𝐺𝑊) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
8 elex 3484 . . 3 (𝐹𝑉𝐹 ∈ V)
98adantr 480 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
10 elex 3484 . . 3 (𝐺𝑊𝐺 ∈ V)
1110adantl 481 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
12 funmpt 6583 . . . 4 Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))
13 offval3 7988 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹f / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥))))
1413funeqd 6567 . . . 4 ((𝐹𝑉𝐺𝑊) → (Fun (𝐹f / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))))
1512, 14mpbiri 258 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝐹f / 𝐺))
16 ovex 7445 . . 3 (𝐺 supp 0) ∈ V
17 resfunexg 7216 . . 3 ((Fun (𝐹f / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
1815, 16, 17sylancl 586 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
192, 7, 9, 11, 18ovmpod 7566 1 ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cin 3930  cmpt 5205  dom cdm 5665  cres 5667  Fun wfun 6534  cfv 6540  (class class class)co 7412  cmpo 7414  f cof 7676   supp csupp 8166  0cc0 11136   / cdiv 11901   /f cfdiv 48392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7678  df-fdiv 48393
This theorem is referenced by:  fdivmpt  48395
  Copyright terms: Public domain W3C validator