Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivval Structured version   Visualization version   GIF version

Theorem fdivval 43965
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
fdivval ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)))

Proof of Theorem fdivval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fdiv 43964 . . 3 /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓𝑓 / 𝑔) ↾ (𝑔 supp 0)))
21a1i 11 . 2 ((𝐹𝑉𝐺𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓𝑓 / 𝑔) ↾ (𝑔 supp 0))))
3 oveq12 6985 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑓 / 𝑔) = (𝐹𝑓 / 𝐺))
4 oveq1 6983 . . . . 5 (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0))
54adantl 474 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0))
63, 5reseq12d 5696 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓𝑓 / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)))
76adantl 474 . 2 (((𝐹𝑉𝐺𝑊) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓𝑓 / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)))
8 elex 3434 . . 3 (𝐹𝑉𝐹 ∈ V)
98adantr 473 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
10 elex 3434 . . 3 (𝐺𝑊𝐺 ∈ V)
1110adantl 474 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
12 funmpt 6226 . . . 4 Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))
13 offval0 43930 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹𝑓 / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥))))
1413funeqd 6210 . . . 4 ((𝐹𝑉𝐺𝑊) → (Fun (𝐹𝑓 / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))))
1512, 14mpbiri 250 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝐹𝑓 / 𝐺))
16 ovex 7008 . . 3 (𝐺 supp 0) ∈ V
17 resfunexg 6804 . . 3 ((Fun (𝐹𝑓 / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
1815, 16, 17sylancl 577 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
192, 7, 9, 11, 18ovmpod 7118 1 ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹𝑓 / 𝐺) ↾ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2050  Vcvv 3416  cin 3829  cmpt 5008  dom cdm 5407  cres 5409  Fun wfun 6182  cfv 6188  (class class class)co 6976  cmpo 6978  𝑓 cof 7225   supp csupp 7633  0cc0 10335   / cdiv 11098   /f cfdiv 43963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-ne 2969  df-ral 3094  df-rex 3095  df-reu 3096  df-rab 3098  df-v 3418  df-sbc 3683  df-csb 3788  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-of 7227  df-fdiv 43964
This theorem is referenced by:  fdivmpt  43966
  Copyright terms: Public domain W3C validator