Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fdivval Structured version   Visualization version   GIF version

Theorem fdivval 47313
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.)
Assertion
Ref Expression
fdivval ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))

Proof of Theorem fdivval
Dummy variables 𝑓 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fdiv 47312 . . 3 /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0)))
21a1i 11 . 2 ((𝐹𝑉𝐺𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓f / 𝑔) ↾ (𝑔 supp 0))))
3 oveq12 7421 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓f / 𝑔) = (𝐹f / 𝐺))
4 oveq1 7419 . . . . 5 (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0))
54adantl 481 . . . 4 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0))
63, 5reseq12d 5982 . . 3 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑓f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
76adantl 481 . 2 (((𝐹𝑉𝐺𝑊) ∧ (𝑓 = 𝐹𝑔 = 𝐺)) → ((𝑓f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
8 elex 3492 . . 3 (𝐹𝑉𝐹 ∈ V)
98adantr 480 . 2 ((𝐹𝑉𝐺𝑊) → 𝐹 ∈ V)
10 elex 3492 . . 3 (𝐺𝑊𝐺 ∈ V)
1110adantl 481 . 2 ((𝐹𝑉𝐺𝑊) → 𝐺 ∈ V)
12 funmpt 6586 . . . 4 Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))
13 offval3 7972 . . . . 5 ((𝐹𝑉𝐺𝑊) → (𝐹f / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥))))
1413funeqd 6570 . . . 4 ((𝐹𝑉𝐺𝑊) → (Fun (𝐹f / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑥) / (𝐺𝑥)))))
1512, 14mpbiri 258 . . 3 ((𝐹𝑉𝐺𝑊) → Fun (𝐹f / 𝐺))
16 ovex 7445 . . 3 (𝐺 supp 0) ∈ V
17 resfunexg 7219 . . 3 ((Fun (𝐹f / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
1815, 16, 17sylancl 585 . 2 ((𝐹𝑉𝐺𝑊) → ((𝐹f / 𝐺) ↾ (𝐺 supp 0)) ∈ V)
192, 7, 9, 11, 18ovmpod 7563 1 ((𝐹𝑉𝐺𝑊) → (𝐹 /f 𝐺) = ((𝐹f / 𝐺) ↾ (𝐺 supp 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2105  Vcvv 3473  cin 3947  cmpt 5231  dom cdm 5676  cres 5678  Fun wfun 6537  cfv 6543  (class class class)co 7412  cmpo 7414  f cof 7671   supp csupp 8149  0cc0 11113   / cdiv 11876   /f cfdiv 47311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7673  df-fdiv 47312
This theorem is referenced by:  fdivmpt  47314
  Copyright terms: Public domain W3C validator