| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivval | Structured version Visualization version GIF version | ||
| Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
| Ref | Expression |
|---|---|
| fdivval | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fdiv 48460 | . . 3 ⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)))) |
| 3 | oveq12 7403 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∘f / 𝑔) = (𝐹 ∘f / 𝐺)) | |
| 4 | oveq1 7401 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0)) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0)) |
| 6 | 3, 5 | reseq12d 5959 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| 7 | 6 | adantl 481 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| 8 | elex 3476 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
| 9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
| 10 | elex 3476 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
| 11 | 10 | adantl 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
| 12 | funmpt 6562 | . . . 4 ⊢ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
| 13 | offval3 7970 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
| 14 | 13 | funeqd 6546 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (Fun (𝐹 ∘f / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
| 15 | 12, 14 | mpbiri 258 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝐹 ∘f / 𝐺)) |
| 16 | ovex 7427 | . . 3 ⊢ (𝐺 supp 0) ∈ V | |
| 17 | resfunexg 7196 | . . 3 ⊢ ((Fun (𝐹 ∘f / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) | |
| 18 | 15, 16, 17 | sylancl 586 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) |
| 19 | 2, 7, 9, 11, 18 | ovmpod 7548 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∩ cin 3921 ↦ cmpt 5196 dom cdm 5646 ↾ cres 5648 Fun wfun 6513 ‘cfv 6519 (class class class)co 7394 ∈ cmpo 7396 ∘f cof 7658 supp csupp 8148 0cc0 11086 / cdiv 11851 /f cfdiv 48459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-fdiv 48460 |
| This theorem is referenced by: fdivmpt 48462 |
| Copyright terms: Public domain | W3C validator |