![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fdivval | Structured version Visualization version GIF version |
Description: The quotient of two functions into the complex numbers. (Contributed by AV, 15-May-2020.) |
Ref | Expression |
---|---|
fdivval | ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fdiv 47312 | . . 3 ⊢ /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → /f = (𝑓 ∈ V, 𝑔 ∈ V ↦ ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)))) |
3 | oveq12 7421 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑓 ∘f / 𝑔) = (𝐹 ∘f / 𝐺)) | |
4 | oveq1 7419 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑔 supp 0) = (𝐺 supp 0)) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → (𝑔 supp 0) = (𝐺 supp 0)) |
6 | 3, 5 | reseq12d 5982 | . . 3 ⊢ ((𝑓 = 𝐹 ∧ 𝑔 = 𝐺) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
7 | 6 | adantl 481 | . 2 ⊢ (((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) ∧ (𝑓 = 𝐹 ∧ 𝑔 = 𝐺)) → ((𝑓 ∘f / 𝑔) ↾ (𝑔 supp 0)) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
8 | elex 3492 | . . 3 ⊢ (𝐹 ∈ 𝑉 → 𝐹 ∈ V) | |
9 | 8 | adantr 480 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐹 ∈ V) |
10 | elex 3492 | . . 3 ⊢ (𝐺 ∈ 𝑊 → 𝐺 ∈ V) | |
11 | 10 | adantl 481 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → 𝐺 ∈ V) |
12 | funmpt 6586 | . . . 4 ⊢ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))) | |
13 | offval3 7972 | . . . . 5 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 ∘f / 𝐺) = (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥)))) | |
14 | 13 | funeqd 6570 | . . . 4 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (Fun (𝐹 ∘f / 𝐺) ↔ Fun (𝑥 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑥) / (𝐺‘𝑥))))) |
15 | 12, 14 | mpbiri 258 | . . 3 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → Fun (𝐹 ∘f / 𝐺)) |
16 | ovex 7445 | . . 3 ⊢ (𝐺 supp 0) ∈ V | |
17 | resfunexg 7219 | . . 3 ⊢ ((Fun (𝐹 ∘f / 𝐺) ∧ (𝐺 supp 0) ∈ V) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) | |
18 | 15, 16, 17 | sylancl 585 | . 2 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0)) ∈ V) |
19 | 2, 7, 9, 11, 18 | ovmpod 7563 | 1 ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐺 ∈ 𝑊) → (𝐹 /f 𝐺) = ((𝐹 ∘f / 𝐺) ↾ (𝐺 supp 0))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∩ cin 3947 ↦ cmpt 5231 dom cdm 5676 ↾ cres 5678 Fun wfun 6537 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 ∘f cof 7671 supp csupp 8149 0cc0 11113 / cdiv 11876 /f cfdiv 47311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-fdiv 47312 |
This theorem is referenced by: fdivmpt 47314 |
Copyright terms: Public domain | W3C validator |