![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ffsuppbi | Structured version Visualization version GIF version |
Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
ffsuppbi | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ffun 6740 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
2 | 1 | adantl 481 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → Fun 𝐹) |
3 | fex 7246 | . . . . . . 7 ⊢ ((𝐹:𝐼⟶𝑆 ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ V) | |
4 | 3 | expcom 413 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
6 | 5 | imp 406 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝐹 ∈ V) |
7 | simplr 769 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝑍 ∈ 𝑊) | |
8 | funisfsupp 9405 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
9 | 2, 6, 7, 8 | syl3anc 1370 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
10 | fsuppeq 8199 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | |
11 | 10 | imp 406 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
12 | 11 | eleq1d 2824 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → ((𝐹 supp 𝑍) ∈ Fin ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)) |
13 | 9, 12 | bitrd 279 | . 2 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)) |
14 | 13 | ex 412 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∖ cdif 3960 {csn 4631 class class class wbr 5148 ◡ccnv 5688 “ cima 5692 Fun wfun 6557 ⟶wf 6559 (class class class)co 7431 supp csupp 8184 Fincfn 8984 finSupp cfsupp 9399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8185 df-fsupp 9400 |
This theorem is referenced by: fcdmnn0fsupp 12582 |
Copyright terms: Public domain | W3C validator |