| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ffsuppbi | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.) |
| Ref | Expression |
|---|---|
| ffsuppbi | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun 6691 | . . . . 5 ⊢ (𝐹:𝐼⟶𝑆 → Fun 𝐹) | |
| 2 | 1 | adantl 481 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → Fun 𝐹) |
| 3 | fex 7200 | . . . . . . 7 ⊢ ((𝐹:𝐼⟶𝑆 ∧ 𝐼 ∈ 𝑉) → 𝐹 ∈ V) | |
| 4 | 3 | expcom 413 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
| 5 | 4 | adantr 480 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → 𝐹 ∈ V)) |
| 6 | 5 | imp 406 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝐹 ∈ V) |
| 7 | simplr 768 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → 𝑍 ∈ 𝑊) | |
| 8 | funisfsupp 9318 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐹 ∈ V ∧ 𝑍 ∈ 𝑊) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) | |
| 9 | 2, 6, 7, 8 | syl3anc 1373 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin)) |
| 10 | fsuppeq 8154 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍})))) | |
| 11 | 10 | imp 406 | . . . 4 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 supp 𝑍) = (◡𝐹 “ (𝑆 ∖ {𝑍}))) |
| 12 | 11 | eleq1d 2813 | . . 3 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → ((𝐹 supp 𝑍) ∈ Fin ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)) |
| 13 | 9, 12 | bitrd 279 | . 2 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) ∧ 𝐹:𝐼⟶𝑆) → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)) |
| 14 | 13 | ex 412 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑍 ∈ 𝑊) → (𝐹:𝐼⟶𝑆 → (𝐹 finSupp 𝑍 ↔ (◡𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∖ cdif 3911 {csn 4589 class class class wbr 5107 ◡ccnv 5637 “ cima 5641 Fun wfun 6505 ⟶wf 6507 (class class class)co 7387 supp csupp 8139 Fincfn 8918 finSupp cfsupp 9312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-supp 8140 df-fsupp 9313 |
| This theorem is referenced by: fcdmnn0fsupp 12500 |
| Copyright terms: Public domain | W3C validator |