MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffsuppbi Structured version   Visualization version   GIF version

Theorem ffsuppbi 9467
Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.)
Assertion
Ref Expression
ffsuppbi ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)))

Proof of Theorem ffsuppbi
StepHypRef Expression
1 ffun 6750 . . . . 5 (𝐹:𝐼𝑆 → Fun 𝐹)
21adantl 481 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → Fun 𝐹)
3 fex 7263 . . . . . . 7 ((𝐹:𝐼𝑆𝐼𝑉) → 𝐹 ∈ V)
43expcom 413 . . . . . 6 (𝐼𝑉 → (𝐹:𝐼𝑆𝐹 ∈ V))
54adantr 480 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆𝐹 ∈ V))
65imp 406 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝐹 ∈ V)
7 simplr 768 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝑍𝑊)
8 funisfsupp 9437 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
92, 6, 7, 8syl3anc 1371 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
10 fsuppeq 8216 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
1110imp 406 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1211eleq1d 2829 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → ((𝐹 supp 𝑍) ∈ Fin ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))
139, 12bitrd 279 . 2 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))
1413ex 412 1 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cdif 3973  {csn 4648   class class class wbr 5166  ccnv 5699  cima 5703  Fun wfun 6567  wf 6569  (class class class)co 7448   supp csupp 8201  Fincfn 9003   finSupp cfsupp 9431
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-supp 8202  df-fsupp 9432
This theorem is referenced by:  fcdmnn0fsupp  12610
  Copyright terms: Public domain W3C validator