MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ffsuppbi Structured version   Visualization version   GIF version

Theorem ffsuppbi 9325
Description: Two ways of saying that a function with known codomain is finitely supported. (Contributed by AV, 8-Jul-2019.)
Assertion
Ref Expression
ffsuppbi ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)))

Proof of Theorem ffsuppbi
StepHypRef Expression
1 ffun 6673 . . . . 5 (𝐹:𝐼𝑆 → Fun 𝐹)
21adantl 481 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → Fun 𝐹)
3 fex 7182 . . . . . . 7 ((𝐹:𝐼𝑆𝐼𝑉) → 𝐹 ∈ V)
43expcom 413 . . . . . 6 (𝐼𝑉 → (𝐹:𝐼𝑆𝐹 ∈ V))
54adantr 480 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆𝐹 ∈ V))
65imp 406 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝐹 ∈ V)
7 simplr 768 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → 𝑍𝑊)
8 funisfsupp 9294 . . . 4 ((Fun 𝐹𝐹 ∈ V ∧ 𝑍𝑊) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
92, 6, 7, 8syl3anc 1373 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 supp 𝑍) ∈ Fin))
10 fsuppeq 8131 . . . . 5 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍}))))
1110imp 406 . . . 4 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 supp 𝑍) = (𝐹 “ (𝑆 ∖ {𝑍})))
1211eleq1d 2813 . . 3 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → ((𝐹 supp 𝑍) ∈ Fin ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))
139, 12bitrd 279 . 2 (((𝐼𝑉𝑍𝑊) ∧ 𝐹:𝐼𝑆) → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin))
1413ex 412 1 ((𝐼𝑉𝑍𝑊) → (𝐹:𝐼𝑆 → (𝐹 finSupp 𝑍 ↔ (𝐹 “ (𝑆 ∖ {𝑍})) ∈ Fin)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cdif 3908  {csn 4585   class class class wbr 5102  ccnv 5630  cima 5634  Fun wfun 6493  wf 6495  (class class class)co 7369   supp csupp 8116  Fincfn 8895   finSupp cfsupp 9288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-supp 8117  df-fsupp 9289
This theorem is referenced by:  fcdmnn0fsupp  12476
  Copyright terms: Public domain W3C validator