![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fcdmnn0fsupp | Structured version Visualization version GIF version |
Description: A function into ℕ0 is finitely supported iff its support is finite. (Contributed by AV, 8-Jul-2019.) |
Ref | Expression |
---|---|
fcdmnn0fsupp | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | c0ex 11252 | . . . 4 ⊢ 0 ∈ V | |
2 | ffsuppbi 9435 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 0 ∈ V) → (𝐹:𝐼⟶ℕ0 → (𝐹 finSupp 0 ↔ (◡𝐹 “ (ℕ0 ∖ {0})) ∈ Fin))) | |
3 | 1, 2 | mpan2 691 | . . 3 ⊢ (𝐼 ∈ 𝑉 → (𝐹:𝐼⟶ℕ0 → (𝐹 finSupp 0 ↔ (◡𝐹 “ (ℕ0 ∖ {0})) ∈ Fin))) |
4 | 3 | imp 406 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ (ℕ0 ∖ {0})) ∈ Fin)) |
5 | dfn2 12536 | . . . 4 ⊢ ℕ = (ℕ0 ∖ {0}) | |
6 | 5 | imaeq2i 6077 | . . 3 ⊢ (◡𝐹 “ ℕ) = (◡𝐹 “ (ℕ0 ∖ {0})) |
7 | 6 | eleq1i 2829 | . 2 ⊢ ((◡𝐹 “ ℕ) ∈ Fin ↔ (◡𝐹 “ (ℕ0 ∖ {0})) ∈ Fin) |
8 | 4, 7 | bitr4di 289 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐹:𝐼⟶ℕ0) → (𝐹 finSupp 0 ↔ (◡𝐹 “ ℕ) ∈ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2105 Vcvv 3477 ∖ cdif 3959 {csn 4630 class class class wbr 5147 ◡ccnv 5687 “ cima 5691 ⟶wf 6558 Fincfn 8983 finSupp cfsupp 9398 0cc0 11152 ℕcn 12263 ℕ0cn0 12523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-fsupp 9399 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-nn 12264 df-n0 12524 |
This theorem is referenced by: snifpsrbag 21957 |
Copyright terms: Public domain | W3C validator |