| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > deg1fvi | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial degree respects protection. (Contributed by Stefan O'Rear, 28-Mar-2015.) |
| Ref | Expression |
|---|---|
| deg1fvi | ⊢ (deg1‘𝑅) = (deg1‘( I ‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvi 6944 | . . . 4 ⊢ (𝑅 ∈ V → ( I ‘𝑅) = 𝑅) | |
| 2 | 1 | fveq2d 6869 | . . 3 ⊢ (𝑅 ∈ V → (deg1‘( I ‘𝑅)) = (deg1‘𝑅)) |
| 3 | eqid 2730 | . . . . . . 7 ⊢ (deg1‘∅) = (deg1‘∅) | |
| 4 | eqid 2730 | . . . . . . 7 ⊢ (Poly1‘∅) = (Poly1‘∅) | |
| 5 | 00ply1bas 22130 | . . . . . . 7 ⊢ ∅ = (Base‘(Poly1‘∅)) | |
| 6 | 3, 4, 5 | deg1xrf 25993 | . . . . . 6 ⊢ (deg1‘∅):∅⟶ℝ* |
| 7 | ffn 6695 | . . . . . 6 ⊢ ((deg1‘∅):∅⟶ℝ* → (deg1‘∅) Fn ∅) | |
| 8 | 6, 7 | ax-mp 5 | . . . . 5 ⊢ (deg1‘∅) Fn ∅ |
| 9 | fn0 6657 | . . . . 5 ⊢ ((deg1‘∅) Fn ∅ ↔ (deg1‘∅) = ∅) | |
| 10 | 8, 9 | mpbi 230 | . . . 4 ⊢ (deg1‘∅) = ∅ |
| 11 | fvprc 6857 | . . . . 5 ⊢ (¬ 𝑅 ∈ V → ( I ‘𝑅) = ∅) | |
| 12 | 11 | fveq2d 6869 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (deg1‘( I ‘𝑅)) = (deg1‘∅)) |
| 13 | fvprc 6857 | . . . 4 ⊢ (¬ 𝑅 ∈ V → (deg1‘𝑅) = ∅) | |
| 14 | 10, 12, 13 | 3eqtr4a 2791 | . . 3 ⊢ (¬ 𝑅 ∈ V → (deg1‘( I ‘𝑅)) = (deg1‘𝑅)) |
| 15 | 2, 14 | pm2.61i 182 | . 2 ⊢ (deg1‘( I ‘𝑅)) = (deg1‘𝑅) |
| 16 | 15 | eqcomi 2739 | 1 ⊢ (deg1‘𝑅) = (deg1‘( I ‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3455 ∅c0 4304 I cid 5540 Fn wfn 6514 ⟶wf 6515 ‘cfv 6519 ℝ*cxr 11225 Poly1cpl1 22067 deg1cdg1 25966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-er 8682 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-sup 9411 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-fz 13482 df-fzo 13629 df-seq 13977 df-hash 14306 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-0g 17410 df-gsum 17411 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-grp 18874 df-minusg 18875 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-ur 20097 df-ring 20150 df-cring 20151 df-cnfld 21271 df-psr 21824 df-mpl 21826 df-opsr 21828 df-psr1 22070 df-ply1 22072 df-mdeg 25967 df-deg1 25968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |