MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgsuci Structured version   Visualization version   GIF version

Theorem uzrdgsuci 13922
Description: Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 13918. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
uzrdg.3 𝑆 = ran 𝑅
Assertion
Ref Expression
uzrdgsuci (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem uzrdgsuci
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2uz.1 . . . . . 6 𝐶 ∈ ℤ
2 om2uz.2 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3 uzrdg.1 . . . . . 6 𝐴 ∈ V
4 uzrdg.2 . . . . . 6 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
5 uzrdg.3 . . . . . 6 𝑆 = ran 𝑅
61, 2, 3, 4, 5uzrdgfni 13920 . . . . 5 𝑆 Fn (ℤ𝐶)
7 fnfun 6647 . . . . 5 (𝑆 Fn (ℤ𝐶) → Fun 𝑆)
86, 7ax-mp 5 . . . 4 Fun 𝑆
9 peano2uz 12882 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
101, 2, 3, 4uzrdglem 13919 . . . . . 6 ((𝐵 + 1) ∈ (ℤ𝐶) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ ran 𝑅)
119, 10syl 17 . . . . 5 (𝐵 ∈ (ℤ𝐶) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ ran 𝑅)
1211, 5eleqtrrdi 2845 . . . 4 (𝐵 ∈ (ℤ𝐶) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑆)
13 funopfv 6941 . . . 4 (Fun 𝑆 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑆 → (𝑆‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
148, 12, 13mpsyl 68 . . 3 (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))))
151, 2om2uzf1oi 13915 . . . . . . . 8 𝐺:ω–1-1-onto→(ℤ𝐶)
16 f1ocnvdm 7280 . . . . . . . 8 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
1715, 16mpan 689 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → (𝐺𝐵) ∈ ω)
18 peano2 7878 . . . . . . 7 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
1917, 18syl 17 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → suc (𝐺𝐵) ∈ ω)
201, 2om2uzsuci 13910 . . . . . . . 8 ((𝐺𝐵) ∈ ω → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) + 1))
2117, 20syl 17 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) + 1))
22 f1ocnvfv2 7272 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
2315, 22mpan 689 . . . . . . . 8 (𝐵 ∈ (ℤ𝐶) → (𝐺‘(𝐺𝐵)) = 𝐵)
2423oveq1d 7421 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → ((𝐺‘(𝐺𝐵)) + 1) = (𝐵 + 1))
2521, 24eqtrd 2773 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → (𝐺‘suc (𝐺𝐵)) = (𝐵 + 1))
26 f1ocnvfv 7273 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
2715, 26mpan 689 . . . . . 6 (suc (𝐺𝐵) ∈ ω → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
2819, 25, 27sylc 65 . . . . 5 (𝐵 ∈ (ℤ𝐶) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵))
2928fveq2d 6893 . . . 4 (𝐵 ∈ (ℤ𝐶) → (𝑅‘(𝐺‘(𝐵 + 1))) = (𝑅‘suc (𝐺𝐵)))
3029fveq2d 6893 . . 3 (𝐵 ∈ (ℤ𝐶) → (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
3114, 30eqtrd 2773 . 2 (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
32 frsuc 8434 . . . . . . . 8 ((𝐺𝐵) ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))))
334fveq1i 6890 . . . . . . . 8 (𝑅‘suc (𝐺𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵))
344fveq1i 6890 . . . . . . . . 9 (𝑅‘(𝐺𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))
3534fveq2i 6892 . . . . . . . 8 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵)))
3632, 33, 353eqtr4g 2798 . . . . . . 7 ((𝐺𝐵) ∈ ω → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
371, 2, 3, 4om2uzrdg 13918 . . . . . . . . 9 ((𝐺𝐵) ∈ ω → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
3837fveq2d 6893 . . . . . . . 8 ((𝐺𝐵) ∈ ω → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
39 df-ov 7409 . . . . . . . 8 ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
4038, 39eqtr4di 2791 . . . . . . 7 ((𝐺𝐵) ∈ ω → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
4136, 40eqtrd 2773 . . . . . 6 ((𝐺𝐵) ∈ ω → (𝑅‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
42 fvex 6902 . . . . . . 7 (𝐺‘(𝐺𝐵)) ∈ V
43 fvex 6902 . . . . . . 7 (2nd ‘(𝑅‘(𝐺𝐵))) ∈ V
44 oveq1 7413 . . . . . . . . 9 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧 + 1) = ((𝐺‘(𝐺𝐵)) + 1))
45 oveq1 7413 . . . . . . . . 9 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹𝑤))
4644, 45opeq12d 4881 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩)
47 oveq2 7414 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ((𝐺‘(𝐺𝐵))𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
4847opeq2d 4880 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
49 oveq1 7413 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
50 oveq1 7413 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦))
5149, 50opeq12d 4881 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩)
52 oveq2 7414 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤))
5352opeq2d 4880 . . . . . . . . 9 (𝑦 = 𝑤 → ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
5451, 53cbvmpov 7501 . . . . . . . 8 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
55 opex 5464 . . . . . . . 8 ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V
5646, 48, 54, 55ovmpo 7565 . . . . . . 7 (((𝐺‘(𝐺𝐵)) ∈ V ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ V) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
5742, 43, 56mp2an 691 . . . . . 6 ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩
5841, 57eqtrdi 2789 . . . . 5 ((𝐺𝐵) ∈ ω → (𝑅‘suc (𝐺𝐵)) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
5958fveq2d 6893 . . . 4 ((𝐺𝐵) ∈ ω → (2nd ‘(𝑅‘suc (𝐺𝐵))) = (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩))
60 ovex 7439 . . . . 5 ((𝐺‘(𝐺𝐵)) + 1) ∈ V
61 ovex 7439 . . . . 5 ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ V
6260, 61op2nd 7981 . . . 4 (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))
6359, 62eqtrdi 2789 . . 3 ((𝐺𝐵) ∈ ω → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
6417, 63syl 17 . 2 (𝐵 ∈ (ℤ𝐶) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
651, 2, 3, 4uzrdglem 13919 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
6665, 5eleqtrrdi 2845 . . . . 5 (𝐵 ∈ (ℤ𝐶) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑆)
67 funopfv 6941 . . . . 5 (Fun 𝑆 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑆 → (𝑆𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
688, 66, 67mpsyl 68 . . . 4 (𝐵 ∈ (ℤ𝐶) → (𝑆𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
6968eqcomd 2739 . . 3 (𝐵 ∈ (ℤ𝐶) → (2nd ‘(𝑅‘(𝐺𝐵))) = (𝑆𝐵))
7023, 69oveq12d 7424 . 2 (𝐵 ∈ (ℤ𝐶) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) = (𝐵𝐹(𝑆𝐵)))
7131, 64, 703eqtrd 2777 1 (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  Vcvv 3475  cop 4634  cmpt 5231  ccnv 5675  ran crn 5677  cres 5678  suc csuc 6364  Fun wfun 6535   Fn wfn 6536  1-1-ontowf1o 6540  cfv 6541  (class class class)co 7406  cmpo 7408  ωcom 7852  2nd c2nd 7971  reccrdg 8406  1c1 11108   + caddc 11110  cz 12555  cuz 12819
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-er 8700  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-n0 12470  df-z 12556  df-uz 12820
This theorem is referenced by:  seqp1  13978
  Copyright terms: Public domain W3C validator