MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdgsuci Structured version   Visualization version   GIF version

Theorem uzrdgsuci 13978
Description: Successor value of a recursive definition generator on upper integers. See comment in om2uzrdg 13974. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 13-Sep-2013.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
uzrdg.3 𝑆 = ran 𝑅
Assertion
Ref Expression
uzrdgsuci (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem uzrdgsuci
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 om2uz.1 . . . . . 6 𝐶 ∈ ℤ
2 om2uz.2 . . . . . 6 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3 uzrdg.1 . . . . . 6 𝐴 ∈ V
4 uzrdg.2 . . . . . 6 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
5 uzrdg.3 . . . . . 6 𝑆 = ran 𝑅
61, 2, 3, 4, 5uzrdgfni 13976 . . . . 5 𝑆 Fn (ℤ𝐶)
7 fnfun 6638 . . . . 5 (𝑆 Fn (ℤ𝐶) → Fun 𝑆)
86, 7ax-mp 5 . . . 4 Fun 𝑆
9 peano2uz 12917 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → (𝐵 + 1) ∈ (ℤ𝐶))
101, 2, 3, 4uzrdglem 13975 . . . . . 6 ((𝐵 + 1) ∈ (ℤ𝐶) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ ran 𝑅)
119, 10syl 17 . . . . 5 (𝐵 ∈ (ℤ𝐶) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ ran 𝑅)
1211, 5eleqtrrdi 2845 . . . 4 (𝐵 ∈ (ℤ𝐶) → ⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑆)
13 funopfv 6928 . . . 4 (Fun 𝑆 → (⟨(𝐵 + 1), (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))⟩ ∈ 𝑆 → (𝑆‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1))))))
148, 12, 13mpsyl 68 . . 3 (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))))
151, 2om2uzf1oi 13971 . . . . . . . 8 𝐺:ω–1-1-onto→(ℤ𝐶)
16 f1ocnvdm 7278 . . . . . . . 8 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺𝐵) ∈ ω)
1715, 16mpan 690 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → (𝐺𝐵) ∈ ω)
18 peano2 7886 . . . . . . 7 ((𝐺𝐵) ∈ ω → suc (𝐺𝐵) ∈ ω)
1917, 18syl 17 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → suc (𝐺𝐵) ∈ ω)
201, 2om2uzsuci 13966 . . . . . . . 8 ((𝐺𝐵) ∈ ω → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) + 1))
2117, 20syl 17 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → (𝐺‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵)) + 1))
22 f1ocnvfv2 7270 . . . . . . . . 9 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ 𝐵 ∈ (ℤ𝐶)) → (𝐺‘(𝐺𝐵)) = 𝐵)
2315, 22mpan 690 . . . . . . . 8 (𝐵 ∈ (ℤ𝐶) → (𝐺‘(𝐺𝐵)) = 𝐵)
2423oveq1d 7420 . . . . . . 7 (𝐵 ∈ (ℤ𝐶) → ((𝐺‘(𝐺𝐵)) + 1) = (𝐵 + 1))
2521, 24eqtrd 2770 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → (𝐺‘suc (𝐺𝐵)) = (𝐵 + 1))
26 f1ocnvfv 7271 . . . . . . 7 ((𝐺:ω–1-1-onto→(ℤ𝐶) ∧ suc (𝐺𝐵) ∈ ω) → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
2715, 26mpan 690 . . . . . 6 (suc (𝐺𝐵) ∈ ω → ((𝐺‘suc (𝐺𝐵)) = (𝐵 + 1) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵)))
2819, 25, 27sylc 65 . . . . 5 (𝐵 ∈ (ℤ𝐶) → (𝐺‘(𝐵 + 1)) = suc (𝐺𝐵))
2928fveq2d 6880 . . . 4 (𝐵 ∈ (ℤ𝐶) → (𝑅‘(𝐺‘(𝐵 + 1))) = (𝑅‘suc (𝐺𝐵)))
3029fveq2d 6880 . . 3 (𝐵 ∈ (ℤ𝐶) → (2nd ‘(𝑅‘(𝐺‘(𝐵 + 1)))) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
3114, 30eqtrd 2770 . 2 (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (2nd ‘(𝑅‘suc (𝐺𝐵))))
32 frsuc 8451 . . . . . . . 8 ((𝐺𝐵) ∈ ω → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))))
334fveq1i 6877 . . . . . . . 8 (𝑅‘suc (𝐺𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘suc (𝐺𝐵))
344fveq1i 6877 . . . . . . . . 9 (𝑅‘(𝐺𝐵)) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵))
3534fveq2i 6879 . . . . . . . 8 ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘(𝐺𝐵)))
3632, 33, 353eqtr4g 2795 . . . . . . 7 ((𝐺𝐵) ∈ ω → (𝑅‘suc (𝐺𝐵)) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))))
371, 2, 3, 4om2uzrdg 13974 . . . . . . . . 9 ((𝐺𝐵) ∈ ω → (𝑅‘(𝐺𝐵)) = ⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
3837fveq2d 6880 . . . . . . . 8 ((𝐺𝐵) ∈ ω → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩))
39 df-ov 7408 . . . . . . . 8 ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘⟨(𝐺‘(𝐺𝐵)), (2nd ‘(𝑅‘(𝐺𝐵)))⟩)
4038, 39eqtr4di 2788 . . . . . . 7 ((𝐺𝐵) ∈ ω → ((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)‘(𝑅‘(𝐺𝐵))) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
4136, 40eqtrd 2770 . . . . . 6 ((𝐺𝐵) ∈ ω → (𝑅‘suc (𝐺𝐵)) = ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))))
42 fvex 6889 . . . . . . 7 (𝐺‘(𝐺𝐵)) ∈ V
43 fvex 6889 . . . . . . 7 (2nd ‘(𝑅‘(𝐺𝐵))) ∈ V
44 oveq1 7412 . . . . . . . . 9 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧 + 1) = ((𝐺‘(𝐺𝐵)) + 1))
45 oveq1 7412 . . . . . . . . 9 (𝑧 = (𝐺‘(𝐺𝐵)) → (𝑧𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹𝑤))
4644, 45opeq12d 4857 . . . . . . . 8 (𝑧 = (𝐺‘(𝐺𝐵)) → ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩)
47 oveq2 7413 . . . . . . . . 9 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ((𝐺‘(𝐺𝐵))𝐹𝑤) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
4847opeq2d 4856 . . . . . . . 8 (𝑤 = (2nd ‘(𝑅‘(𝐺𝐵))) → ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹𝑤)⟩ = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
49 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥 + 1) = (𝑧 + 1))
50 oveq1 7412 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑥𝐹𝑦) = (𝑧𝐹𝑦))
5149, 50opeq12d 4857 . . . . . . . . 9 (𝑥 = 𝑧 → ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩)
52 oveq2 7413 . . . . . . . . . 10 (𝑦 = 𝑤 → (𝑧𝐹𝑦) = (𝑧𝐹𝑤))
5352opeq2d 4856 . . . . . . . . 9 (𝑦 = 𝑤 → ⟨(𝑧 + 1), (𝑧𝐹𝑦)⟩ = ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
5451, 53cbvmpov 7502 . . . . . . . 8 (𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩) = (𝑧 ∈ V, 𝑤 ∈ V ↦ ⟨(𝑧 + 1), (𝑧𝐹𝑤)⟩)
55 opex 5439 . . . . . . . 8 ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩ ∈ V
5646, 48, 54, 55ovmpo 7567 . . . . . . 7 (((𝐺‘(𝐺𝐵)) ∈ V ∧ (2nd ‘(𝑅‘(𝐺𝐵))) ∈ V) → ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
5742, 43, 56mp2an 692 . . . . . 6 ((𝐺‘(𝐺𝐵))(𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩)(2nd ‘(𝑅‘(𝐺𝐵)))) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩
5841, 57eqtrdi 2786 . . . . 5 ((𝐺𝐵) ∈ ω → (𝑅‘suc (𝐺𝐵)) = ⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩)
5958fveq2d 6880 . . . 4 ((𝐺𝐵) ∈ ω → (2nd ‘(𝑅‘suc (𝐺𝐵))) = (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩))
60 ovex 7438 . . . . 5 ((𝐺‘(𝐺𝐵)) + 1) ∈ V
61 ovex 7438 . . . . 5 ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) ∈ V
6260, 61op2nd 7997 . . . 4 (2nd ‘⟨((𝐺‘(𝐺𝐵)) + 1), ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))⟩) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵))))
6359, 62eqtrdi 2786 . . 3 ((𝐺𝐵) ∈ ω → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
6417, 63syl 17 . 2 (𝐵 ∈ (ℤ𝐶) → (2nd ‘(𝑅‘suc (𝐺𝐵))) = ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))))
651, 2, 3, 4uzrdglem 13975 . . . . . 6 (𝐵 ∈ (ℤ𝐶) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ ran 𝑅)
6665, 5eleqtrrdi 2845 . . . . 5 (𝐵 ∈ (ℤ𝐶) → ⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑆)
67 funopfv 6928 . . . . 5 (Fun 𝑆 → (⟨𝐵, (2nd ‘(𝑅‘(𝐺𝐵)))⟩ ∈ 𝑆 → (𝑆𝐵) = (2nd ‘(𝑅‘(𝐺𝐵)))))
688, 66, 67mpsyl 68 . . . 4 (𝐵 ∈ (ℤ𝐶) → (𝑆𝐵) = (2nd ‘(𝑅‘(𝐺𝐵))))
6968eqcomd 2741 . . 3 (𝐵 ∈ (ℤ𝐶) → (2nd ‘(𝑅‘(𝐺𝐵))) = (𝑆𝐵))
7023, 69oveq12d 7423 . 2 (𝐵 ∈ (ℤ𝐶) → ((𝐺‘(𝐺𝐵))𝐹(2nd ‘(𝑅‘(𝐺𝐵)))) = (𝐵𝐹(𝑆𝐵)))
7131, 64, 703eqtrd 2774 1 (𝐵 ∈ (ℤ𝐶) → (𝑆‘(𝐵 + 1)) = (𝐵𝐹(𝑆𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cop 4607  cmpt 5201  ccnv 5653  ran crn 5655  cres 5656  suc csuc 6354  Fun wfun 6525   Fn wfn 6526  1-1-ontowf1o 6530  cfv 6531  (class class class)co 7405  cmpo 7407  ωcom 7861  2nd c2nd 7987  reccrdg 8423  1c1 11130   + caddc 11132  cz 12588  cuz 12852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-uz 12853
This theorem is referenced by:  seqp1  14034
  Copyright terms: Public domain W3C validator