| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzrdg0i | Structured version Visualization version GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13963. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| uzrdg.1 | ⊢ 𝐴 ∈ V |
| uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
| uzrdg.3 | ⊢ 𝑆 = ran 𝑅 |
| Ref | Expression |
|---|---|
| uzrdg0i | ⊢ (𝑆‘𝐶) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | uzrdg.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | . . . 4 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) | |
| 5 | uzrdg.3 | . . . 4 ⊢ 𝑆 = ran 𝑅 | |
| 6 | 1, 2, 3, 4, 5 | uzrdgfni 13965 | . . 3 ⊢ 𝑆 Fn (ℤ≥‘𝐶) |
| 7 | fnfun 6634 | . . 3 ⊢ (𝑆 Fn (ℤ≥‘𝐶) → Fun 𝑆) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ Fun 𝑆 |
| 9 | 4 | fveq1i 6873 | . . . . 5 ⊢ (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) |
| 10 | opex 5436 | . . . . . 6 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
| 11 | fr0g 8444 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
| 13 | 9, 12 | eqtri 2757 | . . . 4 ⊢ (𝑅‘∅) = 〈𝐶, 𝐴〉 |
| 14 | frfnom 8443 | . . . . . 6 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 15 | 4 | fneq1i 6631 | . . . . . 6 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω) |
| 16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ 𝑅 Fn ω |
| 17 | peano1 7878 | . . . . 5 ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn 7066 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . 4 ⊢ (𝑅‘∅) ∈ ran 𝑅 |
| 20 | 13, 19 | eqeltrri 2830 | . . 3 ⊢ 〈𝐶, 𝐴〉 ∈ ran 𝑅 |
| 21 | 20, 5 | eleqtrri 2832 | . 2 ⊢ 〈𝐶, 𝐴〉 ∈ 𝑆 |
| 22 | funopfv 6924 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
| 23 | 8, 21, 22 | mp2 9 | 1 ⊢ (𝑆‘𝐶) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∅c0 4306 〈cop 4605 ↦ cmpt 5198 ran crn 5652 ↾ cres 5653 Fun wfun 6521 Fn wfn 6522 ‘cfv 6527 (class class class)co 7399 ∈ cmpo 7401 ωcom 7855 reccrdg 8417 1c1 11122 + caddc 11124 ℤcz 12580 ℤ≥cuz 12844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-tr 5227 df-id 5545 df-eprel 5550 df-po 5558 df-so 5559 df-fr 5603 df-we 5605 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-pred 6287 df-ord 6352 df-on 6353 df-lim 6354 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-om 7856 df-2nd 7983 df-frecs 8274 df-wrecs 8305 df-recs 8379 df-rdg 8418 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-nn 12233 df-n0 12494 df-z 12581 df-uz 12845 |
| This theorem is referenced by: seq1 14021 |
| Copyright terms: Public domain | W3C validator |