Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdg0i Structured version   Visualization version   GIF version

Theorem uzrdg0i 13331
 Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13328. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
uzrdg.3 𝑆 = ran 𝑅
Assertion
Ref Expression
uzrdg0i (𝑆𝐶) = 𝐴
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem uzrdg0i
StepHypRef Expression
1 om2uz.1 . . . 4 𝐶 ∈ ℤ
2 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3 uzrdg.1 . . . 4 𝐴 ∈ V
4 uzrdg.2 . . . 4 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
5 uzrdg.3 . . . 4 𝑆 = ran 𝑅
61, 2, 3, 4, 5uzrdgfni 13330 . . 3 𝑆 Fn (ℤ𝐶)
7 fnfun 6441 . . 3 (𝑆 Fn (ℤ𝐶) → Fun 𝑆)
86, 7ax-mp 5 . 2 Fun 𝑆
94fveq1i 6662 . . . . 5 (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅)
10 opex 5343 . . . . . 6 𝐶, 𝐴⟩ ∈ V
11 fr0g 8067 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
1210, 11ax-mp 5 . . . . 5 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
139, 12eqtri 2847 . . . 4 (𝑅‘∅) = ⟨𝐶, 𝐴
14 frfnom 8066 . . . . . 6 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
154fneq1i 6438 . . . . . 6 (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω)
1614, 15mpbir 234 . . . . 5 𝑅 Fn ω
17 peano1 7595 . . . . 5 ∅ ∈ ω
18 fnfvelrn 6839 . . . . 5 ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅)
1916, 17, 18mp2an 691 . . . 4 (𝑅‘∅) ∈ ran 𝑅
2013, 19eqeltrri 2913 . . 3 𝐶, 𝐴⟩ ∈ ran 𝑅
2120, 5eleqtrri 2915 . 2 𝐶, 𝐴⟩ ∈ 𝑆
22 funopfv 6708 . 2 (Fun 𝑆 → (⟨𝐶, 𝐴⟩ ∈ 𝑆 → (𝑆𝐶) = 𝐴))
238, 21, 22mp2 9 1 (𝑆𝐶) = 𝐴
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∈ wcel 2115  Vcvv 3480  ∅c0 4276  ⟨cop 4556   ↦ cmpt 5132  ran crn 5543   ↾ cres 5544  Fun wfun 6337   Fn wfn 6338  ‘cfv 6343  (class class class)co 7149   ∈ cmpo 7151  ωcom 7574  reccrdg 8041  1c1 10536   + caddc 10538  ℤcz 11978  ℤ≥cuz 12240 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-n0 11895  df-z 11979  df-uz 12241 This theorem is referenced by:  seq1  13386
 Copyright terms: Public domain W3C validator