![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzrdg0i | Structured version Visualization version GIF version |
Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13928. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
uzrdg.1 | ⊢ 𝐴 ∈ V |
uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) |
uzrdg.3 | ⊢ 𝑆 = ran 𝑅 |
Ref | Expression |
---|---|
uzrdg0i | ⊢ (𝑆‘𝐶) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | uzrdg.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | uzrdg.2 | . . . 4 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) | |
5 | uzrdg.3 | . . . 4 ⊢ 𝑆 = ran 𝑅 | |
6 | 1, 2, 3, 4, 5 | uzrdgfni 13930 | . . 3 ⊢ 𝑆 Fn (ℤ≥‘𝐶) |
7 | fnfun 6649 | . . 3 ⊢ (𝑆 Fn (ℤ≥‘𝐶) → Fun 𝑆) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ Fun 𝑆 |
9 | 4 | fveq1i 6892 | . . . . 5 ⊢ (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) |
10 | opex 5464 | . . . . . 6 ⊢ ⟨𝐶, 𝐴⟩ ∈ V | |
11 | fr0g 8442 | . . . . . 6 ⊢ (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩ |
13 | 9, 12 | eqtri 2759 | . . . 4 ⊢ (𝑅‘∅) = ⟨𝐶, 𝐴⟩ |
14 | frfnom 8441 | . . . . . 6 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω | |
15 | 4 | fneq1i 6646 | . . . . . 6 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω) |
16 | 14, 15 | mpbir 230 | . . . . 5 ⊢ 𝑅 Fn ω |
17 | peano1 7883 | . . . . 5 ⊢ ∅ ∈ ω | |
18 | fnfvelrn 7082 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
19 | 16, 17, 18 | mp2an 689 | . . . 4 ⊢ (𝑅‘∅) ∈ ran 𝑅 |
20 | 13, 19 | eqeltrri 2829 | . . 3 ⊢ ⟨𝐶, 𝐴⟩ ∈ ran 𝑅 |
21 | 20, 5 | eleqtrri 2831 | . 2 ⊢ ⟨𝐶, 𝐴⟩ ∈ 𝑆 |
22 | funopfv 6943 | . 2 ⊢ (Fun 𝑆 → (⟨𝐶, 𝐴⟩ ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
23 | 8, 21, 22 | mp2 9 | 1 ⊢ (𝑆‘𝐶) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∅c0 4322 ⟨cop 4634 ↦ cmpt 5231 ran crn 5677 ↾ cres 5678 Fun wfun 6537 Fn wfn 6538 ‘cfv 6543 (class class class)co 7412 ∈ cmpo 7414 ωcom 7859 reccrdg 8415 1c1 11117 + caddc 11119 ℤcz 12565 ℤ≥cuz 12829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-er 8709 df-en 8946 df-dom 8947 df-sdom 8948 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-nn 12220 df-n0 12480 df-z 12566 df-uz 12830 |
This theorem is referenced by: seq1 13986 |
Copyright terms: Public domain | W3C validator |