| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzrdg0i | Structured version Visualization version GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13863. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| uzrdg.1 | ⊢ 𝐴 ∈ V |
| uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
| uzrdg.3 | ⊢ 𝑆 = ran 𝑅 |
| Ref | Expression |
|---|---|
| uzrdg0i | ⊢ (𝑆‘𝐶) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | uzrdg.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | . . . 4 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) | |
| 5 | uzrdg.3 | . . . 4 ⊢ 𝑆 = ran 𝑅 | |
| 6 | 1, 2, 3, 4, 5 | uzrdgfni 13865 | . . 3 ⊢ 𝑆 Fn (ℤ≥‘𝐶) |
| 7 | fnfun 6582 | . . 3 ⊢ (𝑆 Fn (ℤ≥‘𝐶) → Fun 𝑆) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ Fun 𝑆 |
| 9 | 4 | fveq1i 6823 | . . . . 5 ⊢ (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) |
| 10 | opex 5407 | . . . . . 6 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
| 11 | fr0g 8358 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
| 13 | 9, 12 | eqtri 2752 | . . . 4 ⊢ (𝑅‘∅) = 〈𝐶, 𝐴〉 |
| 14 | frfnom 8357 | . . . . . 6 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 15 | 4 | fneq1i 6579 | . . . . . 6 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω) |
| 16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ 𝑅 Fn ω |
| 17 | peano1 7822 | . . . . 5 ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn 7014 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . 4 ⊢ (𝑅‘∅) ∈ ran 𝑅 |
| 20 | 13, 19 | eqeltrri 2825 | . . 3 ⊢ 〈𝐶, 𝐴〉 ∈ ran 𝑅 |
| 21 | 20, 5 | eleqtrri 2827 | . 2 ⊢ 〈𝐶, 𝐴〉 ∈ 𝑆 |
| 22 | funopfv 6872 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
| 23 | 8, 21, 22 | mp2 9 | 1 ⊢ (𝑆‘𝐶) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3436 ∅c0 4284 〈cop 4583 ↦ cmpt 5173 ran crn 5620 ↾ cres 5621 Fun wfun 6476 Fn wfn 6477 ‘cfv 6482 (class class class)co 7349 ∈ cmpo 7351 ωcom 7799 reccrdg 8331 1c1 11010 + caddc 11012 ℤcz 12471 ℤ≥cuz 12735 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-n0 12385 df-z 12472 df-uz 12736 |
| This theorem is referenced by: seq1 13921 |
| Copyright terms: Public domain | W3C validator |