| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzrdg0i | Structured version Visualization version GIF version | ||
| Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13921. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| uzrdg.1 | ⊢ 𝐴 ∈ V |
| uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
| uzrdg.3 | ⊢ 𝑆 = ran 𝑅 |
| Ref | Expression |
|---|---|
| uzrdg0i | ⊢ (𝑆‘𝐶) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | uzrdg.1 | . . . 4 ⊢ 𝐴 ∈ V | |
| 4 | uzrdg.2 | . . . 4 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) | |
| 5 | uzrdg.3 | . . . 4 ⊢ 𝑆 = ran 𝑅 | |
| 6 | 1, 2, 3, 4, 5 | uzrdgfni 13923 | . . 3 ⊢ 𝑆 Fn (ℤ≥‘𝐶) |
| 7 | fnfun 6618 | . . 3 ⊢ (𝑆 Fn (ℤ≥‘𝐶) → Fun 𝑆) | |
| 8 | 6, 7 | ax-mp 5 | . 2 ⊢ Fun 𝑆 |
| 9 | 4 | fveq1i 6859 | . . . . 5 ⊢ (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) |
| 10 | opex 5424 | . . . . . 6 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
| 11 | fr0g 8404 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
| 12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
| 13 | 9, 12 | eqtri 2752 | . . . 4 ⊢ (𝑅‘∅) = 〈𝐶, 𝐴〉 |
| 14 | frfnom 8403 | . . . . . 6 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 15 | 4 | fneq1i 6615 | . . . . . 6 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω) |
| 16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ 𝑅 Fn ω |
| 17 | peano1 7865 | . . . . 5 ⊢ ∅ ∈ ω | |
| 18 | fnfvelrn 7052 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
| 19 | 16, 17, 18 | mp2an 692 | . . . 4 ⊢ (𝑅‘∅) ∈ ran 𝑅 |
| 20 | 13, 19 | eqeltrri 2825 | . . 3 ⊢ 〈𝐶, 𝐴〉 ∈ ran 𝑅 |
| 21 | 20, 5 | eleqtrri 2827 | . 2 ⊢ 〈𝐶, 𝐴〉 ∈ 𝑆 |
| 22 | funopfv 6910 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
| 23 | 8, 21, 22 | mp2 9 | 1 ⊢ (𝑆‘𝐶) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 〈cop 4595 ↦ cmpt 5188 ran crn 5639 ↾ cres 5640 Fun wfun 6505 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 ωcom 7842 reccrdg 8377 1c1 11069 + caddc 11071 ℤcz 12529 ℤ≥cuz 12793 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 |
| This theorem is referenced by: seq1 13979 |
| Copyright terms: Public domain | W3C validator |