MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uzrdg0i Structured version   Visualization version   GIF version

Theorem uzrdg0i 13752
Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 13749. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.)
Hypotheses
Ref Expression
om2uz.1 𝐶 ∈ ℤ
om2uz.2 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
uzrdg.1 𝐴 ∈ V
uzrdg.2 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
uzrdg.3 𝑆 = ran 𝑅
Assertion
Ref Expression
uzrdg0i (𝑆𝐶) = 𝐴
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝐶   𝑦,𝐺   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐺(𝑥)

Proof of Theorem uzrdg0i
StepHypRef Expression
1 om2uz.1 . . . 4 𝐶 ∈ ℤ
2 om2uz.2 . . . 4 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω)
3 uzrdg.1 . . . 4 𝐴 ∈ V
4 uzrdg.2 . . . 4 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)
5 uzrdg.3 . . . 4 𝑆 = ran 𝑅
61, 2, 3, 4, 5uzrdgfni 13751 . . 3 𝑆 Fn (ℤ𝐶)
7 fnfun 6571 . . 3 (𝑆 Fn (ℤ𝐶) → Fun 𝑆)
86, 7ax-mp 5 . 2 Fun 𝑆
94fveq1i 6812 . . . . 5 (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅)
10 opex 5398 . . . . . 6 𝐶, 𝐴⟩ ∈ V
11 fr0g 8314 . . . . . 6 (⟨𝐶, 𝐴⟩ ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴⟩)
1210, 11ax-mp 5 . . . . 5 ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω)‘∅) = ⟨𝐶, 𝐴
139, 12eqtri 2765 . . . 4 (𝑅‘∅) = ⟨𝐶, 𝐴
14 frfnom 8313 . . . . . 6 (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω
154fneq1i 6568 . . . . . 6 (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω)
1614, 15mpbir 230 . . . . 5 𝑅 Fn ω
17 peano1 7780 . . . . 5 ∅ ∈ ω
18 fnfvelrn 6997 . . . . 5 ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅)
1916, 17, 18mp2an 689 . . . 4 (𝑅‘∅) ∈ ran 𝑅
2013, 19eqeltrri 2835 . . 3 𝐶, 𝐴⟩ ∈ ran 𝑅
2120, 5eleqtrri 2837 . 2 𝐶, 𝐴⟩ ∈ 𝑆
22 funopfv 6860 . 2 (Fun 𝑆 → (⟨𝐶, 𝐴⟩ ∈ 𝑆 → (𝑆𝐶) = 𝐴))
238, 21, 22mp2 9 1 (𝑆𝐶) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2105  Vcvv 3441  c0 4267  cop 4577  cmpt 5170  ran crn 5608  cres 5609  Fun wfun 6459   Fn wfn 6460  cfv 6465  (class class class)co 7315  cmpo 7317  ωcom 7757  reccrdg 8287  1c1 10945   + caddc 10947  cz 12392  cuz 12655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5238  ax-nul 5245  ax-pow 5303  ax-pr 5367  ax-un 7628  ax-cnex 11000  ax-resscn 11001  ax-1cn 11002  ax-icn 11003  ax-addcl 11004  ax-addrcl 11005  ax-mulcl 11006  ax-mulrcl 11007  ax-mulcom 11008  ax-addass 11009  ax-mulass 11010  ax-distr 11011  ax-i2m1 11012  ax-1ne0 11013  ax-1rid 11014  ax-rnegex 11015  ax-rrecex 11016  ax-cnre 11017  ax-pre-lttri 11018  ax-pre-lttrn 11019  ax-pre-ltadd 11020  ax-pre-mulgt0 11021
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3916  df-nul 4268  df-if 4472  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-tr 5205  df-id 5507  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7272  df-ov 7318  df-oprab 7319  df-mpo 7320  df-om 7758  df-2nd 7877  df-frecs 8144  df-wrecs 8175  df-recs 8249  df-rdg 8288  df-er 8546  df-en 8782  df-dom 8783  df-sdom 8784  df-pnf 11084  df-mnf 11085  df-xr 11086  df-ltxr 11087  df-le 11088  df-sub 11280  df-neg 11281  df-nn 12047  df-n0 12307  df-z 12393  df-uz 12656
This theorem is referenced by:  seq1  13807
  Copyright terms: Public domain W3C validator