![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzrdg0i | Structured version Visualization version GIF version |
Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 14000. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
uzrdg.1 | ⊢ 𝐴 ∈ V |
uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
uzrdg.3 | ⊢ 𝑆 = ran 𝑅 |
Ref | Expression |
---|---|
uzrdg0i | ⊢ (𝑆‘𝐶) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | uzrdg.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | uzrdg.2 | . . . 4 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) | |
5 | uzrdg.3 | . . . 4 ⊢ 𝑆 = ran 𝑅 | |
6 | 1, 2, 3, 4, 5 | uzrdgfni 14002 | . . 3 ⊢ 𝑆 Fn (ℤ≥‘𝐶) |
7 | fnfun 6673 | . . 3 ⊢ (𝑆 Fn (ℤ≥‘𝐶) → Fun 𝑆) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ Fun 𝑆 |
9 | 4 | fveq1i 6912 | . . . . 5 ⊢ (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) |
10 | opex 5476 | . . . . . 6 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
11 | fr0g 8481 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
13 | 9, 12 | eqtri 2764 | . . . 4 ⊢ (𝑅‘∅) = 〈𝐶, 𝐴〉 |
14 | frfnom 8480 | . . . . . 6 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
15 | 4 | fneq1i 6670 | . . . . . 6 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω) |
16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ 𝑅 Fn ω |
17 | peano1 7915 | . . . . 5 ⊢ ∅ ∈ ω | |
18 | fnfvelrn 7104 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
19 | 16, 17, 18 | mp2an 692 | . . . 4 ⊢ (𝑅‘∅) ∈ ran 𝑅 |
20 | 13, 19 | eqeltrri 2837 | . . 3 ⊢ 〈𝐶, 𝐴〉 ∈ ran 𝑅 |
21 | 20, 5 | eleqtrri 2839 | . 2 ⊢ 〈𝐶, 𝐴〉 ∈ 𝑆 |
22 | funopfv 6963 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
23 | 8, 21, 22 | mp2 9 | 1 ⊢ (𝑆‘𝐶) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1538 ∈ wcel 2107 Vcvv 3479 ∅c0 4340 〈cop 4638 ↦ cmpt 5232 ran crn 5691 ↾ cres 5692 Fun wfun 6560 Fn wfn 6561 ‘cfv 6566 (class class class)co 7435 ∈ cmpo 7437 ωcom 7891 reccrdg 8454 1c1 11160 + caddc 11162 ℤcz 12617 ℤ≥cuz 12882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-n0 12531 df-z 12618 df-uz 12883 |
This theorem is referenced by: seq1 14058 |
Copyright terms: Public domain | W3C validator |