![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzrdg0i | Structured version Visualization version GIF version |
Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg 14009. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
uzrdg.1 | ⊢ 𝐴 ∈ V |
uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
uzrdg.3 | ⊢ 𝑆 = ran 𝑅 |
Ref | Expression |
---|---|
uzrdg0i | ⊢ (𝑆‘𝐶) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . . 4 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . . 4 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | uzrdg.1 | . . . 4 ⊢ 𝐴 ∈ V | |
4 | uzrdg.2 | . . . 4 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) | |
5 | uzrdg.3 | . . . 4 ⊢ 𝑆 = ran 𝑅 | |
6 | 1, 2, 3, 4, 5 | uzrdgfni 14011 | . . 3 ⊢ 𝑆 Fn (ℤ≥‘𝐶) |
7 | fnfun 6681 | . . 3 ⊢ (𝑆 Fn (ℤ≥‘𝐶) → Fun 𝑆) | |
8 | 6, 7 | ax-mp 5 | . 2 ⊢ Fun 𝑆 |
9 | 4 | fveq1i 6923 | . . . . 5 ⊢ (𝑅‘∅) = ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) |
10 | opex 5484 | . . . . . 6 ⊢ 〈𝐶, 𝐴〉 ∈ V | |
11 | fr0g 8494 | . . . . . 6 ⊢ (〈𝐶, 𝐴〉 ∈ V → ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉) | |
12 | 10, 11 | ax-mp 5 | . . . . 5 ⊢ ((rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω)‘∅) = 〈𝐶, 𝐴〉 |
13 | 9, 12 | eqtri 2768 | . . . 4 ⊢ (𝑅‘∅) = 〈𝐶, 𝐴〉 |
14 | frfnom 8493 | . . . . . 6 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
15 | 4 | fneq1i 6678 | . . . . . 6 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω) |
16 | 14, 15 | mpbir 231 | . . . . 5 ⊢ 𝑅 Fn ω |
17 | peano1 7929 | . . . . 5 ⊢ ∅ ∈ ω | |
18 | fnfvelrn 7116 | . . . . 5 ⊢ ((𝑅 Fn ω ∧ ∅ ∈ ω) → (𝑅‘∅) ∈ ran 𝑅) | |
19 | 16, 17, 18 | mp2an 691 | . . . 4 ⊢ (𝑅‘∅) ∈ ran 𝑅 |
20 | 13, 19 | eqeltrri 2841 | . . 3 ⊢ 〈𝐶, 𝐴〉 ∈ ran 𝑅 |
21 | 20, 5 | eleqtrri 2843 | . 2 ⊢ 〈𝐶, 𝐴〉 ∈ 𝑆 |
22 | funopfv 6974 | . 2 ⊢ (Fun 𝑆 → (〈𝐶, 𝐴〉 ∈ 𝑆 → (𝑆‘𝐶) = 𝐴)) | |
23 | 8, 21, 22 | mp2 9 | 1 ⊢ (𝑆‘𝐶) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 〈cop 4654 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 Fun wfun 6569 Fn wfn 6570 ‘cfv 6575 (class class class)co 7450 ∈ cmpo 7452 ωcom 7905 reccrdg 8467 1c1 11187 + caddc 11189 ℤcz 12641 ℤ≥cuz 12905 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-er 8765 df-en 9006 df-dom 9007 df-sdom 9008 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-n0 12556 df-z 12642 df-uz 12906 |
This theorem is referenced by: seq1 14067 |
Copyright terms: Public domain | W3C validator |