Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvvolicof Structured version   Visualization version   GIF version

Theorem fvvolicof 45987
Description: The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fvvolicof.f (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
fvvolicof.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fvvolicof (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))

Proof of Theorem fvvolicof
StepHypRef Expression
1 fvvolicof.f . . . 4 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
21ffund 6715 . . 3 (𝜑 → Fun 𝐹)
3 fvvolicof.x . . . 4 (𝜑𝑋𝐴)
41fdmd 6721 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
54eqcomd 2742 . . . 4 (𝜑𝐴 = dom 𝐹)
63, 5eleqtrd 2837 . . 3 (𝜑𝑋 ∈ dom 𝐹)
7 fvco 6982 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹𝑋)))
82, 6, 7syl2anc 584 . 2 (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹𝑋)))
9 icof 45210 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
10 ffun 6714 . . . . 5 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,))
119, 10ax-mp 5 . . . 4 Fun [,)
1211a1i 11 . . 3 (𝜑 → Fun [,))
131, 3ffvelcdmd 7080 . . . 4 (𝜑 → (𝐹𝑋) ∈ (ℝ* × ℝ*))
149fdmi 6722 . . . 4 dom [,) = (ℝ* × ℝ*)
1513, 14eleqtrrdi 2846 . . 3 (𝜑 → (𝐹𝑋) ∈ dom [,))
16 fvco 6982 . . 3 ((Fun [,) ∧ (𝐹𝑋) ∈ dom [,)) → ((vol ∘ [,))‘(𝐹𝑋)) = (vol‘([,)‘(𝐹𝑋))))
1712, 15, 16syl2anc 584 . 2 (𝜑 → ((vol ∘ [,))‘(𝐹𝑋)) = (vol‘([,)‘(𝐹𝑋))))
18 df-ov 7413 . . . . 5 ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))) = ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
1918a1i 11 . . . 4 (𝜑 → ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))) = ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩))
20 1st2nd2 8032 . . . . . . 7 ((𝐹𝑋) ∈ (ℝ* × ℝ*) → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2113, 20syl 17 . . . . . 6 (𝜑 → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2221eqcomd 2742 . . . . 5 (𝜑 → ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩ = (𝐹𝑋))
2322fveq2d 6885 . . . 4 (𝜑 → ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩) = ([,)‘(𝐹𝑋)))
2419, 23eqtr2d 2772 . . 3 (𝜑 → ([,)‘(𝐹𝑋)) = ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))))
2524fveq2d 6885 . 2 (𝜑 → (vol‘([,)‘(𝐹𝑋))) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))
268, 17, 253eqtrd 2775 1 (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  𝒫 cpw 4580  cop 4612   × cxp 5657  dom cdm 5659  ccom 5663  Fun wfun 6530  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  *cxr 11273  [,)cico 13369  volcvol 25421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-xr 11278  df-ico 13373
This theorem is referenced by:  voliooicof  45992  volicofmpt  45993
  Copyright terms: Public domain W3C validator