Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvvolicof Structured version   Visualization version   GIF version

Theorem fvvolicof 43422
Description: The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fvvolicof.f (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
fvvolicof.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fvvolicof (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))

Proof of Theorem fvvolicof
StepHypRef Expression
1 fvvolicof.f . . . 4 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
21ffund 6588 . . 3 (𝜑 → Fun 𝐹)
3 fvvolicof.x . . . 4 (𝜑𝑋𝐴)
41fdmd 6595 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
54eqcomd 2744 . . . 4 (𝜑𝐴 = dom 𝐹)
63, 5eleqtrd 2841 . . 3 (𝜑𝑋 ∈ dom 𝐹)
7 fvco 6848 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹𝑋)))
82, 6, 7syl2anc 583 . 2 (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹𝑋)))
9 icof 42648 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
10 ffun 6587 . . . . 5 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,))
119, 10ax-mp 5 . . . 4 Fun [,)
1211a1i 11 . . 3 (𝜑 → Fun [,))
131, 3ffvelrnd 6944 . . . 4 (𝜑 → (𝐹𝑋) ∈ (ℝ* × ℝ*))
149fdmi 6596 . . . 4 dom [,) = (ℝ* × ℝ*)
1513, 14eleqtrrdi 2850 . . 3 (𝜑 → (𝐹𝑋) ∈ dom [,))
16 fvco 6848 . . 3 ((Fun [,) ∧ (𝐹𝑋) ∈ dom [,)) → ((vol ∘ [,))‘(𝐹𝑋)) = (vol‘([,)‘(𝐹𝑋))))
1712, 15, 16syl2anc 583 . 2 (𝜑 → ((vol ∘ [,))‘(𝐹𝑋)) = (vol‘([,)‘(𝐹𝑋))))
18 df-ov 7258 . . . . 5 ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))) = ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
1918a1i 11 . . . 4 (𝜑 → ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))) = ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩))
20 1st2nd2 7843 . . . . . . 7 ((𝐹𝑋) ∈ (ℝ* × ℝ*) → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2113, 20syl 17 . . . . . 6 (𝜑 → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2221eqcomd 2744 . . . . 5 (𝜑 → ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩ = (𝐹𝑋))
2322fveq2d 6760 . . . 4 (𝜑 → ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩) = ([,)‘(𝐹𝑋)))
2419, 23eqtr2d 2779 . . 3 (𝜑 → ([,)‘(𝐹𝑋)) = ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))))
2524fveq2d 6760 . 2 (𝜑 → (vol‘([,)‘(𝐹𝑋))) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))
268, 17, 253eqtrd 2782 1 (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  𝒫 cpw 4530  cop 4564   × cxp 5578  dom cdm 5580  ccom 5584  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  *cxr 10939  [,)cico 13010  volcvol 24532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-xr 10944  df-ico 13014
This theorem is referenced by:  voliooicof  43427  volicofmpt  43428
  Copyright terms: Public domain W3C validator