|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvvolicof | Structured version Visualization version GIF version | ||
| Description: The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) | 
| Ref | Expression | 
|---|---|
| fvvolicof.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) | 
| fvvolicof.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) | 
| Ref | Expression | 
|---|---|
| fvvolicof | ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fvvolicof.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) | |
| 2 | 1 | ffund 6739 | . . 3 ⊢ (𝜑 → Fun 𝐹) | 
| 3 | fvvolicof.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | 1 | fdmd 6745 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) | 
| 5 | 4 | eqcomd 2742 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) | 
| 6 | 3, 5 | eleqtrd 2842 | . . 3 ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) | 
| 7 | fvco 7006 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹‘𝑋))) | |
| 8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹‘𝑋))) | 
| 9 | icof 45229 | . . . . 5 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
| 10 | ffun 6738 | . . . . 5 ⊢ ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,)) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun [,) | 
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → Fun [,)) | 
| 13 | 1, 3 | ffvelcdmd 7104 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (ℝ* × ℝ*)) | 
| 14 | 9 | fdmi 6746 | . . . 4 ⊢ dom [,) = (ℝ* × ℝ*) | 
| 15 | 13, 14 | eleqtrrdi 2851 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ dom [,)) | 
| 16 | fvco 7006 | . . 3 ⊢ ((Fun [,) ∧ (𝐹‘𝑋) ∈ dom [,)) → ((vol ∘ [,))‘(𝐹‘𝑋)) = (vol‘([,)‘(𝐹‘𝑋)))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((vol ∘ [,))‘(𝐹‘𝑋)) = (vol‘([,)‘(𝐹‘𝑋)))) | 
| 18 | df-ov 7435 | . . . . 5 ⊢ ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))) = ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))) = ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉)) | 
| 20 | 1st2nd2 8054 | . . . . . . 7 ⊢ ((𝐹‘𝑋) ∈ (ℝ* × ℝ*) → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
| 21 | 13, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | 
| 22 | 21 | eqcomd 2742 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉 = (𝐹‘𝑋)) | 
| 23 | 22 | fveq2d 6909 | . . . 4 ⊢ (𝜑 → ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) = ([,)‘(𝐹‘𝑋))) | 
| 24 | 19, 23 | eqtr2d 2777 | . . 3 ⊢ (𝜑 → ([,)‘(𝐹‘𝑋)) = ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋)))) | 
| 25 | 24 | fveq2d 6909 | . 2 ⊢ (𝜑 → (vol‘([,)‘(𝐹‘𝑋))) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) | 
| 26 | 8, 17, 25 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 𝒫 cpw 4599 〈cop 4631 × cxp 5682 dom cdm 5684 ∘ ccom 5688 Fun wfun 6554 ⟶wf 6556 ‘cfv 6560 (class class class)co 7432 1st c1st 8013 2nd c2nd 8014 ℝ*cxr 11295 [,)cico 13390 volcvol 25499 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-xr 11300 df-ico 13394 | 
| This theorem is referenced by: voliooicof 46016 volicofmpt 46017 | 
| Copyright terms: Public domain | W3C validator |