Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fvvolicof Structured version   Visualization version   GIF version

Theorem fvvolicof 45989
Description: The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
fvvolicof.f (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
fvvolicof.x (𝜑𝑋𝐴)
Assertion
Ref Expression
fvvolicof (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))

Proof of Theorem fvvolicof
StepHypRef Expression
1 fvvolicof.f . . . 4 (𝜑𝐹:𝐴⟶(ℝ* × ℝ*))
21ffund 6692 . . 3 (𝜑 → Fun 𝐹)
3 fvvolicof.x . . . 4 (𝜑𝑋𝐴)
41fdmd 6698 . . . . 5 (𝜑 → dom 𝐹 = 𝐴)
54eqcomd 2735 . . . 4 (𝜑𝐴 = dom 𝐹)
63, 5eleqtrd 2830 . . 3 (𝜑𝑋 ∈ dom 𝐹)
7 fvco 6959 . . 3 ((Fun 𝐹𝑋 ∈ dom 𝐹) → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹𝑋)))
82, 6, 7syl2anc 584 . 2 (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹𝑋)))
9 icof 45213 . . . . 5 [,):(ℝ* × ℝ*)⟶𝒫 ℝ*
10 ffun 6691 . . . . 5 ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,))
119, 10ax-mp 5 . . . 4 Fun [,)
1211a1i 11 . . 3 (𝜑 → Fun [,))
131, 3ffvelcdmd 7057 . . . 4 (𝜑 → (𝐹𝑋) ∈ (ℝ* × ℝ*))
149fdmi 6699 . . . 4 dom [,) = (ℝ* × ℝ*)
1513, 14eleqtrrdi 2839 . . 3 (𝜑 → (𝐹𝑋) ∈ dom [,))
16 fvco 6959 . . 3 ((Fun [,) ∧ (𝐹𝑋) ∈ dom [,)) → ((vol ∘ [,))‘(𝐹𝑋)) = (vol‘([,)‘(𝐹𝑋))))
1712, 15, 16syl2anc 584 . 2 (𝜑 → ((vol ∘ [,))‘(𝐹𝑋)) = (vol‘([,)‘(𝐹𝑋))))
18 df-ov 7390 . . . . 5 ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))) = ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
1918a1i 11 . . . 4 (𝜑 → ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))) = ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩))
20 1st2nd2 8007 . . . . . . 7 ((𝐹𝑋) ∈ (ℝ* × ℝ*) → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2113, 20syl 17 . . . . . 6 (𝜑 → (𝐹𝑋) = ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩)
2221eqcomd 2735 . . . . 5 (𝜑 → ⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩ = (𝐹𝑋))
2322fveq2d 6862 . . . 4 (𝜑 → ([,)‘⟨(1st ‘(𝐹𝑋)), (2nd ‘(𝐹𝑋))⟩) = ([,)‘(𝐹𝑋)))
2419, 23eqtr2d 2765 . . 3 (𝜑 → ([,)‘(𝐹𝑋)) = ((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋))))
2524fveq2d 6862 . 2 (𝜑 → (vol‘([,)‘(𝐹𝑋))) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))
268, 17, 253eqtrd 2768 1 (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹𝑋))[,)(2nd ‘(𝐹𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  𝒫 cpw 4563  cop 4595   × cxp 5636  dom cdm 5638  ccom 5642  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  *cxr 11207  [,)cico 13308  volcvol 25364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-xr 11212  df-ico 13312
This theorem is referenced by:  voliooicof  45994  volicofmpt  45995
  Copyright terms: Public domain W3C validator