| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fvvolicof | Structured version Visualization version GIF version | ||
| Description: The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| Ref | Expression |
|---|---|
| fvvolicof.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
| fvvolicof.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| Ref | Expression |
|---|---|
| fvvolicof | ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvvolicof.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) | |
| 2 | 1 | ffund 6660 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 3 | fvvolicof.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 4 | 1 | fdmd 6666 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 5 | 4 | eqcomd 2739 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) |
| 6 | 3, 5 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) |
| 7 | fvco 6926 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹‘𝑋))) | |
| 8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹‘𝑋))) |
| 9 | icof 45340 | . . . . 5 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
| 10 | ffun 6659 | . . . . 5 ⊢ ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,)) | |
| 11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun [,) |
| 12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → Fun [,)) |
| 13 | 1, 3 | ffvelcdmd 7024 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (ℝ* × ℝ*)) |
| 14 | 9 | fdmi 6667 | . . . 4 ⊢ dom [,) = (ℝ* × ℝ*) |
| 15 | 13, 14 | eleqtrrdi 2844 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ dom [,)) |
| 16 | fvco 6926 | . . 3 ⊢ ((Fun [,) ∧ (𝐹‘𝑋) ∈ dom [,)) → ((vol ∘ [,))‘(𝐹‘𝑋)) = (vol‘([,)‘(𝐹‘𝑋)))) | |
| 17 | 12, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((vol ∘ [,))‘(𝐹‘𝑋)) = (vol‘([,)‘(𝐹‘𝑋)))) |
| 18 | df-ov 7355 | . . . . 5 ⊢ ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))) = ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
| 19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))) = ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉)) |
| 20 | 1st2nd2 7966 | . . . . . . 7 ⊢ ((𝐹‘𝑋) ∈ (ℝ* × ℝ*) → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
| 21 | 13, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) |
| 22 | 21 | eqcomd 2739 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉 = (𝐹‘𝑋)) |
| 23 | 22 | fveq2d 6832 | . . . 4 ⊢ (𝜑 → ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) = ([,)‘(𝐹‘𝑋))) |
| 24 | 19, 23 | eqtr2d 2769 | . . 3 ⊢ (𝜑 → ([,)‘(𝐹‘𝑋)) = ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋)))) |
| 25 | 24 | fveq2d 6832 | . 2 ⊢ (𝜑 → (vol‘([,)‘(𝐹‘𝑋))) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) |
| 26 | 8, 17, 25 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 𝒫 cpw 4549 〈cop 4581 × cxp 5617 dom cdm 5619 ∘ ccom 5623 Fun wfun 6480 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 1st c1st 7925 2nd c2nd 7926 ℝ*cxr 11152 [,)cico 13249 volcvol 25392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-xr 11157 df-ico 13253 |
| This theorem is referenced by: voliooicof 46118 volicofmpt 46119 |
| Copyright terms: Public domain | W3C validator |