Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fvvolicof | Structured version Visualization version GIF version |
Description: The function value of the Lebesgue measure of a left-closed right-open interval composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
fvvolicof.f | ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) |
fvvolicof.x | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
Ref | Expression |
---|---|
fvvolicof | ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvvolicof.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶(ℝ* × ℝ*)) | |
2 | 1 | ffund 6604 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
3 | fvvolicof.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
4 | 1 | fdmd 6611 | . . . . 5 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
5 | 4 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐴 = dom 𝐹) |
6 | 3, 5 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ dom 𝐹) |
7 | fvco 6866 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ dom 𝐹) → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹‘𝑋))) | |
8 | 2, 6, 7 | syl2anc 584 | . 2 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = ((vol ∘ [,))‘(𝐹‘𝑋))) |
9 | icof 42759 | . . . . 5 ⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | |
10 | ffun 6603 | . . . . 5 ⊢ ([,):(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,)) | |
11 | 9, 10 | ax-mp 5 | . . . 4 ⊢ Fun [,) |
12 | 11 | a1i 11 | . . 3 ⊢ (𝜑 → Fun [,)) |
13 | 1, 3 | ffvelrnd 6962 | . . . 4 ⊢ (𝜑 → (𝐹‘𝑋) ∈ (ℝ* × ℝ*)) |
14 | 9 | fdmi 6612 | . . . 4 ⊢ dom [,) = (ℝ* × ℝ*) |
15 | 13, 14 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → (𝐹‘𝑋) ∈ dom [,)) |
16 | fvco 6866 | . . 3 ⊢ ((Fun [,) ∧ (𝐹‘𝑋) ∈ dom [,)) → ((vol ∘ [,))‘(𝐹‘𝑋)) = (vol‘([,)‘(𝐹‘𝑋)))) | |
17 | 12, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ((vol ∘ [,))‘(𝐹‘𝑋)) = (vol‘([,)‘(𝐹‘𝑋)))) |
18 | df-ov 7278 | . . . . 5 ⊢ ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))) = ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
19 | 18 | a1i 11 | . . . 4 ⊢ (𝜑 → ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))) = ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉)) |
20 | 1st2nd2 7870 | . . . . . . 7 ⊢ ((𝐹‘𝑋) ∈ (ℝ* × ℝ*) → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) | |
21 | 13, 20 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐹‘𝑋) = 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) |
22 | 21 | eqcomd 2744 | . . . . 5 ⊢ (𝜑 → 〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉 = (𝐹‘𝑋)) |
23 | 22 | fveq2d 6778 | . . . 4 ⊢ (𝜑 → ([,)‘〈(1st ‘(𝐹‘𝑋)), (2nd ‘(𝐹‘𝑋))〉) = ([,)‘(𝐹‘𝑋))) |
24 | 19, 23 | eqtr2d 2779 | . . 3 ⊢ (𝜑 → ([,)‘(𝐹‘𝑋)) = ((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋)))) |
25 | 24 | fveq2d 6778 | . 2 ⊢ (𝜑 → (vol‘([,)‘(𝐹‘𝑋))) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) |
26 | 8, 17, 25 | 3eqtrd 2782 | 1 ⊢ (𝜑 → (((vol ∘ [,)) ∘ 𝐹)‘𝑋) = (vol‘((1st ‘(𝐹‘𝑋))[,)(2nd ‘(𝐹‘𝑋))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 𝒫 cpw 4533 〈cop 4567 × cxp 5587 dom cdm 5589 ∘ ccom 5593 Fun wfun 6427 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 1st c1st 7829 2nd c2nd 7830 ℝ*cxr 11008 [,)cico 13081 volcvol 24627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-xr 11013 df-ico 13085 |
This theorem is referenced by: voliooicof 43537 volicofmpt 43538 |
Copyright terms: Public domain | W3C validator |