Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > voliooico | Structured version Visualization version GIF version |
Description: An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
voliooico.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
voliooico.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
voliooico | ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4465 | . . . . . 6 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) | |
2 | 1 | adantl 482 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
3 | voliooico.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 11003 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | 4 | subidd 11320 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
6 | 5 | eqcomd 2744 | . . . . . . 7 ⊢ (𝜑 → 0 = (𝐵 − 𝐵)) |
7 | 6 | ad2antrr 723 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵 − 𝐵)) |
8 | iffalse 4468 | . . . . . . 7 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) | |
9 | 8 | adantl 482 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
10 | simpll 764 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑) | |
11 | voliooico.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
13 | 10, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
14 | simpr 485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
15 | 14 | adantr 481 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
16 | simpr 485 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) | |
17 | 12, 13, 15, 16 | lenlteq 42903 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵) |
18 | oveq2 7283 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
19 | 18 | adantl 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐵 − 𝐴) = (𝐵 − 𝐵)) |
20 | 10, 17, 19 | syl2anc 584 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) = (𝐵 − 𝐵)) |
21 | 7, 9, 20 | 3eqtr4d 2788 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
22 | 2, 21 | pm2.61dan 810 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
23 | 22 | eqcomd 2744 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
24 | 11 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
25 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
26 | volioo 24733 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
27 | 24, 25, 14, 26 | syl3anc 1370 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
28 | volico 43524 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
29 | 11, 3, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
30 | 29 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
31 | 23, 27, 30 | 3eqtr4d 2788 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
32 | simpl 483 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝜑) | |
33 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → ¬ 𝐴 ≤ 𝐵) | |
34 | 32, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
35 | 32, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
36 | 34, 35 | ltnled 11122 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
37 | 33, 36 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 < 𝐴) |
38 | 3 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
39 | 11 | adantr 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) |
40 | simpr 485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
41 | 38, 39, 40 | ltled 11123 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ≤ 𝐴) |
42 | 39 | rexrd 11025 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ*) |
43 | 38 | rexrd 11025 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ*) |
44 | ioo0 13104 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
45 | 42, 43, 44 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
46 | 41, 45 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴(,)𝐵) = ∅) |
47 | ico0 13125 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
48 | 42, 43, 47 | syl2anc 584 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
49 | 41, 48 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅) |
50 | 46, 49 | eqtr4d 2781 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴(,)𝐵) = (𝐴[,)𝐵)) |
51 | 50 | fveq2d 6778 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
52 | 32, 37, 51 | syl2anc 584 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
53 | 31, 52 | pm2.61dan 810 | 1 ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∅c0 4256 ifcif 4459 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 (,)cioo 13079 [,)cico 13081 volcvol 24627 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fi 9170 df-sup 9201 df-inf 9202 df-oi 9269 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-ioo 13083 df-ico 13085 df-icc 13086 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-rest 17133 df-topgen 17154 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-mopn 20593 df-top 22043 df-topon 22060 df-bases 22096 df-cmp 22538 df-ovol 24628 df-vol 24629 |
This theorem is referenced by: voliooicof 43537 vonn0ioo2 44228 |
Copyright terms: Public domain | W3C validator |