Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  voliooico Structured version   Visualization version   GIF version

Theorem voliooico 42476
 Description: An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
voliooico.1 (𝜑𝐴 ∈ ℝ)
voliooico.2 (𝜑𝐵 ∈ ℝ)
Assertion
Ref Expression
voliooico (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))

Proof of Theorem voliooico
StepHypRef Expression
1 iftrue 4454 . . . . . 6 (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
21adantl 485 . . . . 5 (((𝜑𝐴𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
3 voliooico.2 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
43recnd 10654 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
54subidd 10970 . . . . . . . 8 (𝜑 → (𝐵𝐵) = 0)
65eqcomd 2830 . . . . . . 7 (𝜑 → 0 = (𝐵𝐵))
76ad2antrr 725 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵𝐵))
8 iffalse 4457 . . . . . . 7 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
98adantl 485 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = 0)
10 simpll 766 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑)
11 voliooico.1 . . . . . . . . 9 (𝜑𝐴 ∈ ℝ)
1210, 11syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
1310, 3syl 17 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
14 simpr 488 . . . . . . . . 9 ((𝜑𝐴𝐵) → 𝐴𝐵)
1514adantr 484 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴𝐵)
16 simpr 488 . . . . . . . 8 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵)
1712, 13, 15, 16lenlteq 41838 . . . . . . 7 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵)
18 oveq2 7146 . . . . . . . 8 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
1918adantl 485 . . . . . . 7 ((𝜑𝐴 = 𝐵) → (𝐵𝐴) = (𝐵𝐵))
2010, 17, 19syl2anc 587 . . . . . 6 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵𝐴) = (𝐵𝐵))
217, 9, 203eqtr4d 2869 . . . . 5 (((𝜑𝐴𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
222, 21pm2.61dan 812 . . . 4 ((𝜑𝐴𝐵) → if(𝐴 < 𝐵, (𝐵𝐴), 0) = (𝐵𝐴))
2322eqcomd 2830 . . 3 ((𝜑𝐴𝐵) → (𝐵𝐴) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2411adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐴 ∈ ℝ)
253adantr 484 . . . 4 ((𝜑𝐴𝐵) → 𝐵 ∈ ℝ)
26 volioo 24162 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
2724, 25, 14, 26syl3anc 1368 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵𝐴))
28 volico 42467 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
2911, 3, 28syl2anc 587 . . . 4 (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3029adantr 484 . . 3 ((𝜑𝐴𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵𝐴), 0))
3123, 27, 303eqtr4d 2869 . 2 ((𝜑𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
32 simpl 486 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝜑)
33 simpr 488 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → ¬ 𝐴𝐵)
3432, 3syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 ∈ ℝ)
3532, 11syl 17 . . . . 5 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐴 ∈ ℝ)
3634, 35ltnled 10772 . . . 4 ((𝜑 ∧ ¬ 𝐴𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴𝐵))
3733, 36mpbird 260 . . 3 ((𝜑 ∧ ¬ 𝐴𝐵) → 𝐵 < 𝐴)
383adantr 484 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ)
3911adantr 484 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ)
40 simpr 488 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 < 𝐴)
4138, 39, 40ltled 10773 . . . . . 6 ((𝜑𝐵 < 𝐴) → 𝐵𝐴)
4239rexrd 10676 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐴 ∈ ℝ*)
4338rexrd 10676 . . . . . . 7 ((𝜑𝐵 < 𝐴) → 𝐵 ∈ ℝ*)
44 ioo0 12749 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
4542, 43, 44syl2anc 587 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵𝐴))
4641, 45mpbird 260 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴(,)𝐵) = ∅)
47 ico0 12770 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
4842, 43, 47syl2anc 587 . . . . . 6 ((𝜑𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵𝐴))
4941, 48mpbird 260 . . . . 5 ((𝜑𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅)
5046, 49eqtr4d 2862 . . . 4 ((𝜑𝐵 < 𝐴) → (𝐴(,)𝐵) = (𝐴[,)𝐵))
5150fveq2d 6655 . . 3 ((𝜑𝐵 < 𝐴) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
5232, 37, 51syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝐴𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
5331, 52pm2.61dan 812 1 (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2115  ∅c0 4274  ifcif 4448   class class class wbr 5047  ‘cfv 6336  (class class class)co 7138  ℝcr 10521  0cc0 10522  ℝ*cxr 10659   < clt 10660   ≤ cle 10661   − cmin 10855  (,)cioo 12724  [,)cico 12726  volcvol 24056 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5171  ax-sep 5184  ax-nul 5191  ax-pow 5247  ax-pr 5311  ax-un 7444  ax-inf2 9088  ax-cnex 10578  ax-resscn 10579  ax-1cn 10580  ax-icn 10581  ax-addcl 10582  ax-addrcl 10583  ax-mulcl 10584  ax-mulrcl 10585  ax-mulcom 10586  ax-addass 10587  ax-mulass 10588  ax-distr 10589  ax-i2m1 10590  ax-1ne0 10591  ax-1rid 10592  ax-rnegex 10593  ax-rrecex 10594  ax-cnre 10595  ax-pre-lttri 10596  ax-pre-lttrn 10597  ax-pre-ltadd 10598  ax-pre-mulgt0 10599  ax-pre-sup 10600 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-nel 3118  df-ral 3137  df-rex 3138  df-reu 3139  df-rmo 3140  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-pss 3937  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-tp 4553  df-op 4555  df-uni 4820  df-int 4858  df-iun 4902  df-br 5048  df-opab 5110  df-mpt 5128  df-tr 5154  df-id 5441  df-eprel 5446  df-po 5455  df-so 5456  df-fr 5495  df-se 5496  df-we 5497  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-isom 6345  df-riota 7096  df-ov 7141  df-oprab 7142  df-mpo 7143  df-of 7392  df-om 7564  df-1st 7672  df-2nd 7673  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-dju 9314  df-card 9352  df-pnf 10662  df-mnf 10663  df-xr 10664  df-ltxr 10665  df-le 10666  df-sub 10857  df-neg 10858  df-div 11283  df-nn 11624  df-2 11686  df-3 11687  df-n0 11884  df-z 11968  df-uz 12230  df-q 12335  df-rp 12376  df-xneg 12493  df-xadd 12494  df-xmul 12495  df-ioo 12728  df-ico 12730  df-icc 12731  df-fz 12884  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13424  df-hash 13685  df-cj 14447  df-re 14448  df-im 14449  df-sqrt 14583  df-abs 14584  df-clim 14834  df-rlim 14835  df-sum 15032  df-rest 16685  df-topgen 16706  df-psmet 20523  df-xmet 20524  df-met 20525  df-bl 20526  df-mopn 20527  df-top 21488  df-topon 21505  df-bases 21540  df-cmp 21981  df-ovol 24057  df-vol 24058 This theorem is referenced by:  voliooicof  42480  vonn0ioo2  43171
 Copyright terms: Public domain W3C validator