![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > voliooico | Structured version Visualization version GIF version |
Description: An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
voliooico.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
voliooico.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
voliooico | ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4538 | . . . . . 6 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) | |
2 | 1 | adantl 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
3 | voliooico.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 11282 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | 4 | subidd 11599 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
6 | 5 | eqcomd 2734 | . . . . . . 7 ⊢ (𝜑 → 0 = (𝐵 − 𝐵)) |
7 | 6 | ad2antrr 724 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵 − 𝐵)) |
8 | iffalse 4541 | . . . . . . 7 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) | |
9 | 8 | adantl 480 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
10 | simpll 765 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑) | |
11 | voliooico.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
13 | 10, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
14 | simpr 483 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
15 | 14 | adantr 479 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
16 | simpr 483 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) | |
17 | 12, 13, 15, 16 | lenlteq 44793 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵) |
18 | oveq2 7434 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
19 | 18 | adantl 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐵 − 𝐴) = (𝐵 − 𝐵)) |
20 | 10, 17, 19 | syl2anc 582 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) = (𝐵 − 𝐵)) |
21 | 7, 9, 20 | 3eqtr4d 2778 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
22 | 2, 21 | pm2.61dan 811 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
23 | 22 | eqcomd 2734 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
24 | 11 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
25 | 3 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
26 | volioo 25526 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
27 | 24, 25, 14, 26 | syl3anc 1368 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
28 | volico 45418 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
29 | 11, 3, 28 | syl2anc 582 | . . . 4 ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
30 | 29 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
31 | 23, 27, 30 | 3eqtr4d 2778 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
32 | simpl 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝜑) | |
33 | simpr 483 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → ¬ 𝐴 ≤ 𝐵) | |
34 | 32, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
35 | 32, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
36 | 34, 35 | ltnled 11401 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
37 | 33, 36 | mpbird 256 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 < 𝐴) |
38 | 3 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
39 | 11 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) |
40 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
41 | 38, 39, 40 | ltled 11402 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ≤ 𝐴) |
42 | 39 | rexrd 11304 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ*) |
43 | 38 | rexrd 11304 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ*) |
44 | ioo0 13391 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
45 | 42, 43, 44 | syl2anc 582 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
46 | 41, 45 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴(,)𝐵) = ∅) |
47 | ico0 13412 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
48 | 42, 43, 47 | syl2anc 582 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
49 | 41, 48 | mpbird 256 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅) |
50 | 46, 49 | eqtr4d 2771 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴(,)𝐵) = (𝐴[,)𝐵)) |
51 | 50 | fveq2d 6906 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
52 | 32, 37, 51 | syl2anc 582 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
53 | 31, 52 | pm2.61dan 811 | 1 ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∅c0 4326 ifcif 4532 class class class wbr 5152 ‘cfv 6553 (class class class)co 7426 ℝcr 11147 0cc0 11148 ℝ*cxr 11287 < clt 11288 ≤ cle 11289 − cmin 11484 (,)cioo 13366 [,)cico 13368 volcvol 25420 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7748 ax-inf2 9674 ax-cnex 11204 ax-resscn 11205 ax-1cn 11206 ax-icn 11207 ax-addcl 11208 ax-addrcl 11209 ax-mulcl 11210 ax-mulrcl 11211 ax-mulcom 11212 ax-addass 11213 ax-mulass 11214 ax-distr 11215 ax-i2m1 11216 ax-1ne0 11217 ax-1rid 11218 ax-rnegex 11219 ax-rrecex 11220 ax-cnre 11221 ax-pre-lttri 11222 ax-pre-lttrn 11223 ax-pre-ltadd 11224 ax-pre-mulgt0 11225 ax-pre-sup 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-isom 6562 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-of 7692 df-om 7879 df-1st 8001 df-2nd 8002 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-1o 8495 df-2o 8496 df-er 8733 df-map 8855 df-pm 8856 df-en 8973 df-dom 8974 df-sdom 8975 df-fin 8976 df-fi 9444 df-sup 9475 df-inf 9476 df-oi 9543 df-dju 9934 df-card 9972 df-pnf 11290 df-mnf 11291 df-xr 11292 df-ltxr 11293 df-le 11294 df-sub 11486 df-neg 11487 df-div 11912 df-nn 12253 df-2 12315 df-3 12316 df-n0 12513 df-z 12599 df-uz 12863 df-q 12973 df-rp 13017 df-xneg 13134 df-xadd 13135 df-xmul 13136 df-ioo 13370 df-ico 13372 df-icc 13373 df-fz 13527 df-fzo 13670 df-fl 13799 df-seq 14009 df-exp 14069 df-hash 14332 df-cj 15088 df-re 15089 df-im 15090 df-sqrt 15224 df-abs 15225 df-clim 15474 df-rlim 15475 df-sum 15675 df-rest 17413 df-topgen 17434 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-top 22824 df-topon 22841 df-bases 22877 df-cmp 23319 df-ovol 25421 df-vol 25422 |
This theorem is referenced by: voliooicof 45431 vonn0ioo2 46125 |
Copyright terms: Public domain | W3C validator |