![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > voliooico | Structured version Visualization version GIF version |
Description: An open interval and a left-closed, right-open interval with the same real bounds, have the same Lebesgue measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
voliooico.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
voliooico.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
Ref | Expression |
---|---|
voliooico | ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iftrue 4496 | . . . . . 6 ⊢ (𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) | |
2 | 1 | adantl 483 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
3 | voliooico.2 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
4 | 3 | recnd 11191 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
5 | 4 | subidd 11508 | . . . . . . . 8 ⊢ (𝜑 → (𝐵 − 𝐵) = 0) |
6 | 5 | eqcomd 2739 | . . . . . . 7 ⊢ (𝜑 → 0 = (𝐵 − 𝐵)) |
7 | 6 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 0 = (𝐵 − 𝐵)) |
8 | iffalse 4499 | . . . . . . 7 ⊢ (¬ 𝐴 < 𝐵 → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) | |
9 | 8 | adantl 483 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = 0) |
10 | simpll 766 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝜑) | |
11 | voliooico.1 | . . . . . . . . 9 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 10, 11 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ∈ ℝ) |
13 | 10, 3 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐵 ∈ ℝ) |
14 | simpr 486 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ≤ 𝐵) | |
15 | 14 | adantr 482 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 ≤ 𝐵) |
16 | simpr 486 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → ¬ 𝐴 < 𝐵) | |
17 | 12, 13, 15, 16 | lenlteq 43689 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → 𝐴 = 𝐵) |
18 | oveq2 7369 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → (𝐵 − 𝐴) = (𝐵 − 𝐵)) | |
19 | 18 | adantl 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → (𝐵 − 𝐴) = (𝐵 − 𝐵)) |
20 | 10, 17, 19 | syl2anc 585 | . . . . . 6 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → (𝐵 − 𝐴) = (𝐵 − 𝐵)) |
21 | 7, 9, 20 | 3eqtr4d 2783 | . . . . 5 ⊢ (((𝜑 ∧ 𝐴 ≤ 𝐵) ∧ ¬ 𝐴 < 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
22 | 2, 21 | pm2.61dan 812 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → if(𝐴 < 𝐵, (𝐵 − 𝐴), 0) = (𝐵 − 𝐴)) |
23 | 22 | eqcomd 2739 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (𝐵 − 𝐴) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
24 | 11 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
25 | 3 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
26 | volioo 24956 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | |
27 | 24, 25, 14, 26 | syl3anc 1372 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) |
28 | volico 44314 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) | |
29 | 11, 3, 28 | syl2anc 585 | . . . 4 ⊢ (𝜑 → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
30 | 29 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴[,)𝐵)) = if(𝐴 < 𝐵, (𝐵 − 𝐴), 0)) |
31 | 23, 27, 30 | 3eqtr4d 2783 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
32 | simpl 484 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝜑) | |
33 | simpr 486 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → ¬ 𝐴 ≤ 𝐵) | |
34 | 32, 3 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 ∈ ℝ) |
35 | 32, 11 | syl 17 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐴 ∈ ℝ) |
36 | 34, 35 | ltnled 11310 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → (𝐵 < 𝐴 ↔ ¬ 𝐴 ≤ 𝐵)) |
37 | 33, 36 | mpbird 257 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → 𝐵 < 𝐴) |
38 | 3 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ) |
39 | 11 | adantr 482 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ) |
40 | simpr 486 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 < 𝐴) | |
41 | 38, 39, 40 | ltled 11311 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ≤ 𝐴) |
42 | 39 | rexrd 11213 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐴 ∈ ℝ*) |
43 | 38 | rexrd 11213 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → 𝐵 ∈ ℝ*) |
44 | ioo0 13298 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
45 | 42, 43, 44 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴(,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
46 | 41, 45 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴(,)𝐵) = ∅) |
47 | ico0 13319 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) | |
48 | 42, 43, 47 | syl2anc 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → ((𝐴[,)𝐵) = ∅ ↔ 𝐵 ≤ 𝐴)) |
49 | 41, 48 | mpbird 257 | . . . . 5 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴[,)𝐵) = ∅) |
50 | 46, 49 | eqtr4d 2776 | . . . 4 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (𝐴(,)𝐵) = (𝐴[,)𝐵)) |
51 | 50 | fveq2d 6850 | . . 3 ⊢ ((𝜑 ∧ 𝐵 < 𝐴) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
52 | 32, 37, 51 | syl2anc 585 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
53 | 31, 52 | pm2.61dan 812 | 1 ⊢ (𝜑 → (vol‘(𝐴(,)𝐵)) = (vol‘(𝐴[,)𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∅c0 4286 ifcif 4490 class class class wbr 5109 ‘cfv 6500 (class class class)co 7361 ℝcr 11058 0cc0 11059 ℝ*cxr 11196 < clt 11197 ≤ cle 11198 − cmin 11393 (,)cioo 13273 [,)cico 13275 volcvol 24850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pow 5324 ax-pr 5388 ax-un 7676 ax-inf2 9585 ax-cnex 11115 ax-resscn 11116 ax-1cn 11117 ax-icn 11118 ax-addcl 11119 ax-addrcl 11120 ax-mulcl 11121 ax-mulrcl 11122 ax-mulcom 11123 ax-addass 11124 ax-mulass 11125 ax-distr 11126 ax-i2m1 11127 ax-1ne0 11128 ax-1rid 11129 ax-rnegex 11130 ax-rrecex 11131 ax-cnre 11132 ax-pre-lttri 11133 ax-pre-lttrn 11134 ax-pre-ltadd 11135 ax-pre-mulgt0 11136 ax-pre-sup 11137 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3352 df-reu 3353 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3933 df-nul 4287 df-if 4491 df-pw 4566 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-int 4912 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-tr 5227 df-id 5535 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5592 df-se 5593 df-we 5594 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-rn 5648 df-res 5649 df-ima 5650 df-pred 6257 df-ord 6324 df-on 6325 df-lim 6326 df-suc 6327 df-iota 6452 df-fun 6502 df-fn 6503 df-f 6504 df-f1 6505 df-fo 6506 df-f1o 6507 df-fv 6508 df-isom 6509 df-riota 7317 df-ov 7364 df-oprab 7365 df-mpo 7366 df-of 7621 df-om 7807 df-1st 7925 df-2nd 7926 df-frecs 8216 df-wrecs 8247 df-recs 8321 df-rdg 8360 df-1o 8416 df-2o 8417 df-er 8654 df-map 8773 df-pm 8774 df-en 8890 df-dom 8891 df-sdom 8892 df-fin 8893 df-fi 9355 df-sup 9386 df-inf 9387 df-oi 9454 df-dju 9845 df-card 9883 df-pnf 11199 df-mnf 11200 df-xr 11201 df-ltxr 11202 df-le 11203 df-sub 11395 df-neg 11396 df-div 11821 df-nn 12162 df-2 12224 df-3 12225 df-n0 12422 df-z 12508 df-uz 12772 df-q 12882 df-rp 12924 df-xneg 13041 df-xadd 13042 df-xmul 13043 df-ioo 13277 df-ico 13279 df-icc 13280 df-fz 13434 df-fzo 13577 df-fl 13706 df-seq 13916 df-exp 13977 df-hash 14240 df-cj 14993 df-re 14994 df-im 14995 df-sqrt 15129 df-abs 15130 df-clim 15379 df-rlim 15380 df-sum 15580 df-rest 17312 df-topgen 17333 df-psmet 20811 df-xmet 20812 df-met 20813 df-bl 20814 df-mopn 20815 df-top 22266 df-topon 22283 df-bases 22319 df-cmp 22761 df-ovol 24851 df-vol 24852 |
This theorem is referenced by: voliooicof 44327 vonn0ioo2 45021 |
Copyright terms: Public domain | W3C validator |