MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmfghm Structured version   Visualization version   GIF version

Theorem ghmfghm 19692
Description: The function fulfilling the conditions of ghmgrp 18943 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmfghm.3 (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
ghmfghm (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmfghm
StepHypRef Expression
1 ghmabl.x . 2 𝑋 = (Base‘𝐺)
2 ghmabl.y . 2 𝑌 = (Base‘𝐻)
3 ghmabl.p . 2 + = (+g𝐺)
4 ghmabl.q . 2 = (+g𝐻)
5 ghmfghm.3 . 2 (𝜑𝐺 ∈ Grp)
6 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
7 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
86, 1, 2, 3, 4, 7, 5ghmgrp 18943 . 2 (𝜑𝐻 ∈ Grp)
9 fof 6802 . . 3 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
107, 9syl 17 . 2 (𝜑𝐹:𝑋𝑌)
1163expb 1120 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
121, 2, 3, 4, 5, 8, 10, 11isghmd 19095 1 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1541  wcel 2106  wf 6536  ontowfo 6538  cfv 6540  (class class class)co 7405  Basecbs 17140  +gcplusg 17193  Grpcgrp 18815   GrpHom cghm 19083
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-ghm 19084
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator