MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmfghm Structured version   Visualization version   GIF version

Theorem ghmfghm 19727
Description: The function fulfilling the conditions of ghmgrp 18963 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmfghm.3 (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
ghmfghm (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmfghm
StepHypRef Expression
1 ghmabl.x . 2 𝑋 = (Base‘𝐺)
2 ghmabl.y . 2 𝑌 = (Base‘𝐻)
3 ghmabl.p . 2 + = (+g𝐺)
4 ghmabl.q . 2 = (+g𝐻)
5 ghmfghm.3 . 2 (𝜑𝐺 ∈ Grp)
6 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
7 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
86, 1, 2, 3, 4, 7, 5ghmgrp 18963 . 2 (𝜑𝐻 ∈ Grp)
9 fof 6740 . . 3 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
107, 9syl 17 . 2 (𝜑𝐹:𝑋𝑌)
1163expb 1120 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
121, 2, 3, 4, 5, 8, 10, 11isghmd 19122 1 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wf 6482  ontowfo 6484  cfv 6486  (class class class)co 7353  Basecbs 17138  +gcplusg 17179  Grpcgrp 18830   GrpHom cghm 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fo 6492  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-map 8762  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-ghm 19110
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator