MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ghmfghm Structured version   Visualization version   GIF version

Theorem ghmfghm 19347
Description: The function fulfilling the conditions of ghmgrp 18614 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.)
Hypotheses
Ref Expression
ghmabl.x 𝑋 = (Base‘𝐺)
ghmabl.y 𝑌 = (Base‘𝐻)
ghmabl.p + = (+g𝐺)
ghmabl.q = (+g𝐻)
ghmabl.f ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
ghmabl.1 (𝜑𝐹:𝑋onto𝑌)
ghmfghm.3 (𝜑𝐺 ∈ Grp)
Assertion
Ref Expression
ghmfghm (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
Distinct variable groups:   𝑥, + ,𝑦   𝑥, ,𝑦   𝑥,𝐹,𝑦   𝑥,𝐺,𝑦   𝑥,𝐻,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝜑,𝑥,𝑦

Proof of Theorem ghmfghm
StepHypRef Expression
1 ghmabl.x . 2 𝑋 = (Base‘𝐺)
2 ghmabl.y . 2 𝑌 = (Base‘𝐻)
3 ghmabl.p . 2 + = (+g𝐺)
4 ghmabl.q . 2 = (+g𝐻)
5 ghmfghm.3 . 2 (𝜑𝐺 ∈ Grp)
6 ghmabl.f . . 3 ((𝜑𝑥𝑋𝑦𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
7 ghmabl.1 . . 3 (𝜑𝐹:𝑋onto𝑌)
86, 1, 2, 3, 4, 7, 5ghmgrp 18614 . 2 (𝜑𝐻 ∈ Grp)
9 fof 6672 . . 3 (𝐹:𝑋onto𝑌𝐹:𝑋𝑌)
107, 9syl 17 . 2 (𝜑𝐹:𝑋𝑌)
1163expb 1118 . 2 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
121, 2, 3, 4, 5, 8, 10, 11isghmd 18758 1 (𝜑𝐹 ∈ (𝐺 GrpHom 𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1539  wcel 2108  wf 6414  ontowfo 6416  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-ghm 18747
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator