| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ghmfghm | Structured version Visualization version GIF version | ||
| Description: The function fulfilling the conditions of ghmgrp 18976 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
| Ref | Expression |
|---|---|
| ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
| ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
| ghmabl.p | ⊢ + = (+g‘𝐺) |
| ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
| ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
| ghmfghm.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| Ref | Expression |
|---|---|
| ghmfghm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmabl.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
| 2 | ghmabl.y | . 2 ⊢ 𝑌 = (Base‘𝐻) | |
| 3 | ghmabl.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | ghmabl.q | . 2 ⊢ ⨣ = (+g‘𝐻) | |
| 5 | ghmfghm.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 6 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
| 7 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
| 8 | 6, 1, 2, 3, 4, 7, 5 | ghmgrp 18976 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
| 9 | fof 6735 | . . 3 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
| 10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
| 11 | 6 | 3expb 1120 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
| 12 | 1, 2, 3, 4, 5, 8, 10, 11 | isghmd 19135 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⟶wf 6477 –onto→wfo 6479 ‘cfv 6481 (class class class)co 7346 Basecbs 17117 +gcplusg 17158 Grpcgrp 18843 GrpHom cghm 19122 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-map 8752 df-0g 17342 df-mgm 18545 df-sgrp 18624 df-mnd 18640 df-grp 18846 df-minusg 18847 df-ghm 19123 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |