Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ghmfghm | Structured version Visualization version GIF version |
Description: The function fulfilling the conditions of ghmgrp 18699 is a group homomorphism. (Contributed by Thierry Arnoux, 26-Jan-2020.) |
Ref | Expression |
---|---|
ghmabl.x | ⊢ 𝑋 = (Base‘𝐺) |
ghmabl.y | ⊢ 𝑌 = (Base‘𝐻) |
ghmabl.p | ⊢ + = (+g‘𝐺) |
ghmabl.q | ⊢ ⨣ = (+g‘𝐻) |
ghmabl.f | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
ghmabl.1 | ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) |
ghmfghm.3 | ⊢ (𝜑 → 𝐺 ∈ Grp) |
Ref | Expression |
---|---|
ghmfghm | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ghmabl.x | . 2 ⊢ 𝑋 = (Base‘𝐺) | |
2 | ghmabl.y | . 2 ⊢ 𝑌 = (Base‘𝐻) | |
3 | ghmabl.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | ghmabl.q | . 2 ⊢ ⨣ = (+g‘𝐻) | |
5 | ghmfghm.3 | . 2 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
6 | ghmabl.f | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) | |
7 | ghmabl.1 | . . 3 ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) | |
8 | 6, 1, 2, 3, 4, 7, 5 | ghmgrp 18699 | . 2 ⊢ (𝜑 → 𝐻 ∈ Grp) |
9 | fof 6688 | . . 3 ⊢ (𝐹:𝑋–onto→𝑌 → 𝐹:𝑋⟶𝑌) | |
10 | 7, 9 | syl 17 | . 2 ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) |
11 | 6 | 3expb 1119 | . 2 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) |
12 | 1, 2, 3, 4, 5, 8, 10, 11 | isghmd 18843 | 1 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Grpcgrp 18577 GrpHom cghm 18831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-0g 17152 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-ghm 18832 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |