| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnd1id | Structured version Visualization version GIF version | ||
| Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| mnd1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| mnd1id | ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5386 | . . . 4 ⊢ {𝐼} ∈ V | |
| 2 | mnd1.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 3 | 2 | grpbase 17228 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
| 5 | eqid 2729 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 6 | snex 5386 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
| 7 | 2 | grpplusg 17229 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
| 9 | snidg 4620 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
| 10 | velsn 4601 | . . . . 5 ⊢ (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼) | |
| 11 | df-ov 7372 | . . . . . . 7 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
| 12 | opex 5419 | . . . . . . . 8 ⊢ 〈𝐼, 𝐼〉 ∈ V | |
| 13 | fvsng 7136 | . . . . . . . 8 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
| 14 | 12, 13 | mpan 690 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
| 15 | 11, 14 | eqtrid 2776 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
| 16 | oveq2 7377 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 17 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → 𝑎 = 𝐼) | |
| 18 | 16, 17 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
| 19 | 15, 18 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
| 20 | 10, 19 | biimtrid 242 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
| 21 | 20 | imp 406 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎) |
| 22 | oveq1 7376 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 23 | 22, 17 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
| 24 | 15, 23 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
| 25 | 10, 24 | biimtrid 242 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
| 26 | 25 | imp 406 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎) |
| 27 | 4, 5, 8, 9, 21, 26 | ismgmid2 18571 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (0g‘𝑀)) |
| 28 | 27 | eqcomd 2735 | 1 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 {cpr 4587 〈cop 4591 ‘cfv 6499 (class class class)co 7369 ndxcnx 17139 Basecbs 17155 +gcplusg 17196 0gc0g 17378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 |
| This theorem is referenced by: grp1 18955 |
| Copyright terms: Public domain | W3C validator |