MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnd1id Structured version   Visualization version   GIF version

Theorem mnd1id 18806
Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.)
Hypothesis
Ref Expression
mnd1.m 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
Assertion
Ref Expression
mnd1id (𝐼𝑉 → (0g𝑀) = 𝐼)

Proof of Theorem mnd1id
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 snex 5442 . . . 4 {𝐼} ∈ V
2 mnd1.m . . . . 5 𝑀 = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
32grpbase 17332 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
41, 3ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
5 eqid 2735 . . 3 (0g𝑀) = (0g𝑀)
6 snex 5442 . . . 4 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
72grpplusg 17334 . . . 4 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀))
86, 7ax-mp 5 . . 3 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g𝑀)
9 snidg 4665 . . 3 (𝐼𝑉𝐼 ∈ {𝐼})
10 velsn 4647 . . . . 5 (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼)
11 df-ov 7434 . . . . . . 7 (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩)
12 opex 5475 . . . . . . . 8 𝐼, 𝐼⟩ ∈ V
13 fvsng 7200 . . . . . . . 8 ((⟨𝐼, 𝐼⟩ ∈ V ∧ 𝐼𝑉) → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
1412, 13mpan 690 . . . . . . 7 (𝐼𝑉 → ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩}‘⟨𝐼, 𝐼⟩) = 𝐼)
1511, 14eqtrid 2787 . . . . . 6 (𝐼𝑉 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼)
16 oveq2 7439 . . . . . . 7 (𝑎 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
17 id 22 . . . . . . 7 (𝑎 = 𝐼𝑎 = 𝐼)
1816, 17eqeq12d 2751 . . . . . 6 (𝑎 = 𝐼 → ((𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
1915, 18syl5ibrcom 247 . . . . 5 (𝐼𝑉 → (𝑎 = 𝐼 → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎))
2010, 19biimtrid 242 . . . 4 (𝐼𝑉 → (𝑎 ∈ {𝐼} → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎))
2120imp 406 . . 3 ((𝐼𝑉𝑎 ∈ {𝐼}) → (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝑎) = 𝑎)
22 oveq1 7438 . . . . . . 7 (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼))
2322, 17eqeq12d 2751 . . . . . 6 (𝑎 = 𝐼 → ((𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎 ↔ (𝐼{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝐼))
2415, 23syl5ibrcom 247 . . . . 5 (𝐼𝑉 → (𝑎 = 𝐼 → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎))
2510, 24biimtrid 242 . . . 4 (𝐼𝑉 → (𝑎 ∈ {𝐼} → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎))
2625imp 406 . . 3 ((𝐼𝑉𝑎 ∈ {𝐼}) → (𝑎{⟨⟨𝐼, 𝐼⟩, 𝐼⟩}𝐼) = 𝑎)
274, 5, 8, 9, 21, 26ismgmid2 18694 . 2 (𝐼𝑉𝐼 = (0g𝑀))
2827eqcomd 2741 1 (𝐼𝑉 → (0g𝑀) = 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  {cpr 4633  cop 4637  cfv 6563  (class class class)co 7431  ndxcnx 17227  Basecbs 17245  +gcplusg 17298  0gc0g 17486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-0g 17488
This theorem is referenced by:  grp1  19078
  Copyright terms: Public domain W3C validator