| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mnd1id | Structured version Visualization version GIF version | ||
| Description: The singleton element of a trivial monoid is its identity element. (Contributed by AV, 23-Jan-2020.) |
| Ref | Expression |
|---|---|
| mnd1.m | ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} |
| Ref | Expression |
|---|---|
| mnd1id | ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5369 | . . . 4 ⊢ {𝐼} ∈ V | |
| 2 | mnd1.m | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉} | |
| 3 | 2 | grpbase 17188 | . . . 4 ⊢ ({𝐼} ∈ V → {𝐼} = (Base‘𝑀)) |
| 4 | 1, 3 | ax-mp 5 | . . 3 ⊢ {𝐼} = (Base‘𝑀) |
| 5 | eqid 2731 | . . 3 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
| 6 | snex 5369 | . . . 4 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V | |
| 7 | 2 | grpplusg 17189 | . . . 4 ⊢ ({〈〈𝐼, 𝐼〉, 𝐼〉} ∈ V → {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀)) |
| 8 | 6, 7 | ax-mp 5 | . . 3 ⊢ {〈〈𝐼, 𝐼〉, 𝐼〉} = (+g‘𝑀) |
| 9 | snidg 4608 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
| 10 | velsn 4587 | . . . . 5 ⊢ (𝑎 ∈ {𝐼} ↔ 𝑎 = 𝐼) | |
| 11 | df-ov 7344 | . . . . . . 7 ⊢ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) | |
| 12 | opex 5399 | . . . . . . . 8 ⊢ 〈𝐼, 𝐼〉 ∈ V | |
| 13 | fvsng 7109 | . . . . . . . 8 ⊢ ((〈𝐼, 𝐼〉 ∈ V ∧ 𝐼 ∈ 𝑉) → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) | |
| 14 | 12, 13 | mpan 690 | . . . . . . 7 ⊢ (𝐼 ∈ 𝑉 → ({〈〈𝐼, 𝐼〉, 𝐼〉}‘〈𝐼, 𝐼〉) = 𝐼) |
| 15 | 11, 14 | eqtrid 2778 | . . . . . 6 ⊢ (𝐼 ∈ 𝑉 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼) |
| 16 | oveq2 7349 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 17 | id 22 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → 𝑎 = 𝐼) | |
| 18 | 16, 17 | eqeq12d 2747 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
| 19 | 15, 18 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
| 20 | 10, 19 | biimtrid 242 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎)) |
| 21 | 20 | imp 406 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝑎) = 𝑎) |
| 22 | oveq1 7348 | . . . . . . 7 ⊢ (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼)) | |
| 23 | 22, 17 | eqeq12d 2747 | . . . . . 6 ⊢ (𝑎 = 𝐼 → ((𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎 ↔ (𝐼{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝐼)) |
| 24 | 15, 23 | syl5ibrcom 247 | . . . . 5 ⊢ (𝐼 ∈ 𝑉 → (𝑎 = 𝐼 → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
| 25 | 10, 24 | biimtrid 242 | . . . 4 ⊢ (𝐼 ∈ 𝑉 → (𝑎 ∈ {𝐼} → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎)) |
| 26 | 25 | imp 406 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑎 ∈ {𝐼}) → (𝑎{〈〈𝐼, 𝐼〉, 𝐼〉}𝐼) = 𝑎) |
| 27 | 4, 5, 8, 9, 21, 26 | ismgmid2 18571 | . 2 ⊢ (𝐼 ∈ 𝑉 → 𝐼 = (0g‘𝑀)) |
| 28 | 27 | eqcomd 2737 | 1 ⊢ (𝐼 ∈ 𝑉 → (0g‘𝑀) = 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4571 {cpr 4573 〈cop 4577 ‘cfv 6476 (class class class)co 7341 ndxcnx 17099 Basecbs 17115 +gcplusg 17156 0gc0g 17338 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-n0 12377 df-z 12464 df-uz 12728 df-fz 13403 df-struct 17053 df-slot 17088 df-ndx 17100 df-base 17116 df-plusg 17169 df-0g 17340 |
| This theorem is referenced by: grp1 18955 |
| Copyright terms: Public domain | W3C validator |