| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > grilcbri | Structured version Visualization version GIF version | ||
| Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
| Ref | Expression |
|---|---|
| dfgrlic2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfgrlic2.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| Ref | Expression |
|---|---|
| grilcbri | ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grlicrcl 47967 | . . 3 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) | |
| 2 | dfgrlic2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | dfgrlic2.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 4 | 2, 3 | dfgrlic2 47968 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) |
| 5 | 1, 4 | syl 17 | . 2 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) |
| 6 | 5 | ibi 267 | 1 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∀wral 3061 Vcvv 3480 class class class wbr 5143 –1-1-onto→wf1o 6560 ‘cfv 6561 (class class class)co 7431 Vtxcvtx 29013 ClNeighbVtx cclnbgr 47805 ISubGr cisubgr 47846 ≃𝑔𝑟 cgric 47862 ≃𝑙𝑔𝑟 cgrlic 47944 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8014 df-2nd 8015 df-1o 8506 df-grlim 47945 df-grlic 47948 |
| This theorem is referenced by: grlicsym 47973 grlictr 47975 |
| Copyright terms: Public domain | W3C validator |