![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > grilcbri | Structured version Visualization version GIF version |
Description: Implications of two graphs being locally isomorphic. (Contributed by AV, 9-Jun-2025.) |
Ref | Expression |
---|---|
dfgrlic2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
dfgrlic2.w | ⊢ 𝑊 = (Vtx‘𝐻) |
Ref | Expression |
---|---|
grilcbri | ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grlicrcl 47533 | . . 3 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → (𝐺 ∈ V ∧ 𝐻 ∈ V)) | |
2 | dfgrlic2.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | dfgrlic2.w | . . . 4 ⊢ 𝑊 = (Vtx‘𝐻) | |
4 | 2, 3 | dfgrlic2 47534 | . . 3 ⊢ ((𝐺 ∈ V ∧ 𝐻 ∈ V) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) |
5 | 1, 4 | syl 17 | . 2 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣)))))) |
6 | 5 | ibi 266 | 1 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 (𝐺 ISubGr (𝐺 ClNeighbVtx 𝑣)) ≃𝑔𝑟 (𝐻 ISubGr (𝐻 ClNeighbVtx (𝑓‘𝑣))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ∀wral 3051 Vcvv 3462 class class class wbr 5145 –1-1-onto→wf1o 6545 ‘cfv 6546 (class class class)co 7416 Vtxcvtx 28929 ClNeighbVtx cclnbgr 47426 ISubGr cisubgr 47463 ≃𝑔𝑟 cgric 47477 ≃𝑙𝑔𝑟 cgrlic 47519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-id 5572 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-ov 7419 df-oprab 7420 df-mpo 7421 df-1st 7995 df-2nd 7996 df-1o 8488 df-grlim 47520 df-grlic 47523 |
This theorem is referenced by: grlicsym 47539 grlictr 47541 |
Copyright terms: Public domain | W3C validator |