| Step | Hyp | Ref
| Expression |
| 1 | | grlicrcl 47979 |
. . 3
⊢ (𝑅
≃𝑙𝑔𝑟 𝑆 → (𝑅 ∈ V ∧ 𝑆 ∈ V)) |
| 2 | | grlicrcl 47979 |
. . 3
⊢ (𝑆
≃𝑙𝑔𝑟 𝑇 → (𝑆 ∈ V ∧ 𝑇 ∈ V)) |
| 3 | 1, 2 | anim12i 613 |
. 2
⊢ ((𝑅
≃𝑙𝑔𝑟 𝑆 ∧ 𝑆
≃𝑙𝑔𝑟 𝑇) → ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) |
| 4 | | eqid 2736 |
. . . . . 6
⊢
(Vtx‘𝑅) =
(Vtx‘𝑅) |
| 5 | | eqid 2736 |
. . . . . 6
⊢
(Vtx‘𝑆) =
(Vtx‘𝑆) |
| 6 | 4, 5 | grilcbri 47981 |
. . . . 5
⊢ (𝑅
≃𝑙𝑔𝑟 𝑆 → ∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))))) |
| 7 | | eqid 2736 |
. . . . . 6
⊢
(Vtx‘𝑇) =
(Vtx‘𝑇) |
| 8 | 5, 7 | grilcbri 47981 |
. . . . 5
⊢ (𝑆
≃𝑙𝑔𝑟 𝑇 → ∃ℎ(ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))))) |
| 9 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ ℎ ∈ V |
| 10 | | vex 3468 |
. . . . . . . . . . . . 13
⊢ 𝑔 ∈ V |
| 11 | 9, 10 | coex 7931 |
. . . . . . . . . . . 12
⊢ (ℎ ∘ 𝑔) ∈ V |
| 12 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ (((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))))) → (ℎ ∘ 𝑔) ∈ V) |
| 13 | | f1oco 6846 |
. . . . . . . . . . . . 13
⊢ ((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) → (ℎ ∘ 𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇)) |
| 14 | 13 | ad2ant2r 747 |
. . . . . . . . . . . 12
⊢ (((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))))) → (ℎ ∘ 𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇)) |
| 15 | | f1of 6823 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → 𝑔:(Vtx‘𝑅)⟶(Vtx‘𝑆)) |
| 16 | 15 | ffvelcdmda 7079 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑔‘𝑟) ∈ (Vtx‘𝑆)) |
| 17 | | oveq2 7418 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑠 = (𝑔‘𝑟) → (𝑆 ClNeighbVtx 𝑠) = (𝑆 ClNeighbVtx (𝑔‘𝑟))) |
| 18 | 17 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑠 = (𝑔‘𝑟) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) = (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) |
| 19 | | fveq2 6881 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝑠 = (𝑔‘𝑟) → (ℎ‘𝑠) = (ℎ‘(𝑔‘𝑟))) |
| 20 | 19 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑠 = (𝑔‘𝑟) → (𝑇 ClNeighbVtx (ℎ‘𝑠)) = (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟)))) |
| 21 | 20 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑠 = (𝑔‘𝑟) → (𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) = (𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟))))) |
| 22 | 18, 21 | breq12d 5137 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑠 = (𝑔‘𝑟) → ((𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟)))))) |
| 23 | 22 | rspcv 3602 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔‘𝑟) ∈ (Vtx‘𝑆) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟)))))) |
| 24 | 16, 23 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟)))))) |
| 25 | | fvco3 6983 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑔:(Vtx‘𝑅)⟶(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((ℎ ∘ 𝑔)‘𝑟) = (ℎ‘(𝑔‘𝑟))) |
| 26 | 15, 25 | sylan 580 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((ℎ ∘ 𝑔)‘𝑟) = (ℎ‘(𝑔‘𝑟))) |
| 27 | 26 | eqcomd 2742 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (ℎ‘(𝑔‘𝑟)) = ((ℎ ∘ 𝑔)‘𝑟)) |
| 28 | 27 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟))) = (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))) |
| 29 | 28 | oveq2d 7426 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟)))) = (𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))) |
| 30 | 29 | breq2d 5136 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘(𝑔‘𝑟)))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 31 | 24, 30 | sylibd 239 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 32 | 31 | ex 412 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → (𝑟 ∈ (Vtx‘𝑅) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))))) |
| 33 | 32 | com3r 87 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑠 ∈
(Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) → (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → (𝑟 ∈ (Vtx‘𝑅) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))))) |
| 34 | 33 | imp31 417 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((∀𝑠 ∈
(Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))) |
| 35 | 34 | anim1ci 616 |
. . . . . . . . . . . . . . . . . 18
⊢
((((∀𝑠 ∈
(Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) ∧ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ∧ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 36 | | grictr 47903 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ∧ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))) |
| 37 | 35, 36 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢
((((∀𝑠 ∈
(Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) ∧ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))) |
| 38 | 37 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
(((∀𝑠 ∈
(Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 39 | 38 | ralimdva 3153 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑠 ∈
(Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) → (∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 40 | 39 | expimpd 453 |
. . . . . . . . . . . . . 14
⊢
(∀𝑠 ∈
(Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 42 | 41 | imp 406 |
. . . . . . . . . . . 12
⊢ (((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))) |
| 43 | 14, 42 | jca 511 |
. . . . . . . . . . 11
⊢ (((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))))) → ((ℎ ∘ 𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 44 | | f1oeq1 6811 |
. . . . . . . . . . . 12
⊢ (𝑓 = (ℎ ∘ 𝑔) → (𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ↔ (ℎ ∘ 𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇))) |
| 45 | | fveq1 6880 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = (ℎ ∘ 𝑔) → (𝑓‘𝑟) = ((ℎ ∘ 𝑔)‘𝑟)) |
| 46 | 45 | oveq2d 7426 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = (ℎ ∘ 𝑔) → (𝑇 ClNeighbVtx (𝑓‘𝑟)) = (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))) |
| 47 | 46 | oveq2d 7426 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = (ℎ ∘ 𝑔) → (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟))) = (𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))) |
| 48 | 47 | breq2d 5136 |
. . . . . . . . . . . . 13
⊢ (𝑓 = (ℎ ∘ 𝑔) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟))) ↔ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 49 | 48 | ralbidv 3164 |
. . . . . . . . . . . 12
⊢ (𝑓 = (ℎ ∘ 𝑔) → (∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟))) ↔ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟))))) |
| 50 | 44, 49 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝑓 = (ℎ ∘ 𝑔) → ((𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))) ↔ ((ℎ ∘ 𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx ((ℎ ∘ 𝑔)‘𝑟)))))) |
| 51 | 12, 43, 50 | spcedv 3582 |
. . . . . . . . . 10
⊢ (((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟))))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟))))) |
| 52 | 51 | ex 412 |
. . . . . . . . 9
⊢ ((ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))))) |
| 53 | 52 | exlimiv 1930 |
. . . . . . . 8
⊢
(∃ℎ(ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))))) |
| 54 | 53 | com12 32 |
. . . . . . 7
⊢ ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → (∃ℎ(ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))))) |
| 55 | 54 | exlimiv 1930 |
. . . . . 6
⊢
(∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) → (∃ℎ(ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))))) |
| 56 | 55 | imp 406 |
. . . . 5
⊢
((∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔‘𝑟)))) ∧ ∃ℎ(ℎ:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (ℎ‘𝑠))))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟))))) |
| 57 | 6, 8, 56 | syl2an 596 |
. . . 4
⊢ ((𝑅
≃𝑙𝑔𝑟 𝑆 ∧ 𝑆
≃𝑙𝑔𝑟 𝑇) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟))))) |
| 58 | 57 | adantr 480 |
. . 3
⊢ (((𝑅
≃𝑙𝑔𝑟 𝑆 ∧ 𝑆
≃𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟))))) |
| 59 | 4, 7 | dfgrlic2 47980 |
. . . . 5
⊢ ((𝑅 ∈ V ∧ 𝑇 ∈ V) → (𝑅
≃𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))))) |
| 60 | 59 | ad2ant2rl 749 |
. . . 4
⊢ (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V)) → (𝑅
≃𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))))) |
| 61 | 60 | adantl 481 |
. . 3
⊢ (((𝑅
≃𝑙𝑔𝑟 𝑆 ∧ 𝑆
≃𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → (𝑅
≃𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟
(𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓‘𝑟)))))) |
| 62 | 58, 61 | mpbird 257 |
. 2
⊢ (((𝑅
≃𝑙𝑔𝑟 𝑆 ∧ 𝑆
≃𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → 𝑅
≃𝑙𝑔𝑟 𝑇) |
| 63 | 3, 62 | mpdan 687 |
1
⊢ ((𝑅
≃𝑙𝑔𝑟 𝑆 ∧ 𝑆
≃𝑙𝑔𝑟 𝑇) → 𝑅
≃𝑙𝑔𝑟 𝑇) |