Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlictr Structured version   Visualization version   GIF version

Theorem grlictr 47911
Description: Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025.)
Assertion
Ref Expression
grlictr ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → 𝑅𝑙𝑔𝑟 𝑇)

Proof of Theorem grlictr
Dummy variables 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlicrcl 47903 . . 3 (𝑅𝑙𝑔𝑟 𝑆 → (𝑅 ∈ V ∧ 𝑆 ∈ V))
2 grlicrcl 47903 . . 3 (𝑆𝑙𝑔𝑟 𝑇 → (𝑆 ∈ V ∧ 𝑇 ∈ V))
31, 2anim12i 613 . 2 ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V)))
4 eqid 2735 . . . . . 6 (Vtx‘𝑅) = (Vtx‘𝑅)
5 eqid 2735 . . . . . 6 (Vtx‘𝑆) = (Vtx‘𝑆)
64, 5grilcbri 47905 . . . . 5 (𝑅𝑙𝑔𝑟 𝑆 → ∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))))
7 eqid 2735 . . . . . 6 (Vtx‘𝑇) = (Vtx‘𝑇)
85, 7grilcbri 47905 . . . . 5 (𝑆𝑙𝑔𝑟 𝑇 → ∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))))
9 vex 3482 . . . . . . . . . . . . 13 ∈ V
10 vex 3482 . . . . . . . . . . . . 13 𝑔 ∈ V
119, 10coex 7953 . . . . . . . . . . . 12 (𝑔) ∈ V
1211a1i 11 . . . . . . . . . . 11 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → (𝑔) ∈ V)
13 f1oco 6872 . . . . . . . . . . . . 13 ((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) → (𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇))
1413ad2ant2r 747 . . . . . . . . . . . 12 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → (𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇))
15 f1of 6849 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → 𝑔:(Vtx‘𝑅)⟶(Vtx‘𝑆))
1615ffvelcdmda 7104 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑔𝑟) ∈ (Vtx‘𝑆))
17 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = (𝑔𝑟) → (𝑆 ClNeighbVtx 𝑠) = (𝑆 ClNeighbVtx (𝑔𝑟)))
1817oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = (𝑔𝑟) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) = (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))
19 fveq2 6907 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = (𝑔𝑟) → (𝑠) = (‘(𝑔𝑟)))
2019oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = (𝑔𝑟) → (𝑇 ClNeighbVtx (𝑠)) = (𝑇 ClNeighbVtx (‘(𝑔𝑟))))
2120oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = (𝑔𝑟) → (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) = (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟)))))
2218, 21breq12d 5161 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 = (𝑔𝑟) → ((𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟))))))
2322rspcv 3618 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔𝑟) ∈ (Vtx‘𝑆) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟))))))
2416, 23syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟))))))
25 fvco3 7008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔:(Vtx‘𝑅)⟶(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑔)‘𝑟) = (‘(𝑔𝑟)))
2615, 25sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑔)‘𝑟) = (‘(𝑔𝑟)))
2726eqcomd 2741 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (‘(𝑔𝑟)) = ((𝑔)‘𝑟))
2827oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑇 ClNeighbVtx (‘(𝑔𝑟))) = (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))
2928oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟)))) = (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3029breq2d 5160 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟)))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
3124, 30sylibd 239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
3231ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → (𝑟 ∈ (Vtx‘𝑅) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))))
3332com3r 87 . . . . . . . . . . . . . . . . . . . 20 (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → (𝑟 ∈ (Vtx‘𝑅) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))))
3433imp31 417 . . . . . . . . . . . . . . . . . . 19 (((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3534anim1ci 616 . . . . . . . . . . . . . . . . . 18 ((((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) ∧ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ∧ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
36 grictr 47830 . . . . . . . . . . . . . . . . . 18 (((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ∧ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) ∧ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3837ex 412 . . . . . . . . . . . . . . . 16 (((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
3938ralimdva 3165 . . . . . . . . . . . . . . 15 ((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) → (∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4039expimpd 453 . . . . . . . . . . . . . 14 (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4140adantl 481 . . . . . . . . . . . . 13 ((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4241imp 406 . . . . . . . . . . . 12 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
4314, 42jca 511 . . . . . . . . . . 11 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → ((𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
44 f1oeq1 6837 . . . . . . . . . . . 12 (𝑓 = (𝑔) → (𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ↔ (𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇)))
45 fveq1 6906 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔) → (𝑓𝑟) = ((𝑔)‘𝑟))
4645oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑓 = (𝑔) → (𝑇 ClNeighbVtx (𝑓𝑟)) = (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))
4746oveq2d 7447 . . . . . . . . . . . . . 14 (𝑓 = (𝑔) → (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))) = (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
4847breq2d 5160 . . . . . . . . . . . . 13 (𝑓 = (𝑔) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))) ↔ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4948ralbidv 3176 . . . . . . . . . . . 12 (𝑓 = (𝑔) → (∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))) ↔ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
5044, 49anbi12d 632 . . . . . . . . . . 11 (𝑓 = (𝑔) → ((𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))) ↔ ((𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))))
5112, 43, 50spcedv 3598 . . . . . . . . . 10 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
5251ex 412 . . . . . . . . 9 ((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5352exlimiv 1928 . . . . . . . 8 (∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5453com12 32 . . . . . . 7 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → (∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5554exlimiv 1928 . . . . . 6 (∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → (∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5655imp 406 . . . . 5 ((∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) ∧ ∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
576, 8, 56syl2an 596 . . . 4 ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
5857adantr 480 . . 3 (((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
594, 7dfgrlic2 47904 . . . . 5 ((𝑅 ∈ V ∧ 𝑇 ∈ V) → (𝑅𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
6059ad2ant2rl 749 . . . 4 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V)) → (𝑅𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
6160adantl 481 . . 3 (((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → (𝑅𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
6258, 61mpbird 257 . 2 (((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → 𝑅𝑙𝑔𝑟 𝑇)
633, 62mpdan 687 1 ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → 𝑅𝑙𝑔𝑟 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  Vcvv 3478   class class class wbr 5148  ccom 5693  wf 6559  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  Vtxcvtx 29028   ClNeighbVtx cclnbgr 47743   ISubGr cisubgr 47784  𝑔𝑟 cgric 47800  𝑙𝑔𝑟 cgrlic 47880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-1o 8505  df-map 8867  df-grim 47802  df-gric 47805  df-grlim 47881  df-grlic 47884
This theorem is referenced by:  grlicer  47912
  Copyright terms: Public domain W3C validator