Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  grlictr Structured version   Visualization version   GIF version

Theorem grlictr 48004
Description: Graph local isomorphism is transitive. (Contributed by AV, 10-Jun-2025.)
Assertion
Ref Expression
grlictr ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → 𝑅𝑙𝑔𝑟 𝑇)

Proof of Theorem grlictr
Dummy variables 𝑓 𝑔 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 grlicrcl 47996 . . 3 (𝑅𝑙𝑔𝑟 𝑆 → (𝑅 ∈ V ∧ 𝑆 ∈ V))
2 grlicrcl 47996 . . 3 (𝑆𝑙𝑔𝑟 𝑇 → (𝑆 ∈ V ∧ 𝑇 ∈ V))
31, 2anim12i 613 . 2 ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V)))
4 eqid 2729 . . . . . 6 (Vtx‘𝑅) = (Vtx‘𝑅)
5 eqid 2729 . . . . . 6 (Vtx‘𝑆) = (Vtx‘𝑆)
64, 5grilcbri 47998 . . . . 5 (𝑅𝑙𝑔𝑟 𝑆 → ∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))))
7 eqid 2729 . . . . . 6 (Vtx‘𝑇) = (Vtx‘𝑇)
85, 7grilcbri 47998 . . . . 5 (𝑆𝑙𝑔𝑟 𝑇 → ∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))))
9 vex 3451 . . . . . . . . . . . . 13 ∈ V
10 vex 3451 . . . . . . . . . . . . 13 𝑔 ∈ V
119, 10coex 7906 . . . . . . . . . . . 12 (𝑔) ∈ V
1211a1i 11 . . . . . . . . . . 11 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → (𝑔) ∈ V)
13 f1oco 6823 . . . . . . . . . . . . 13 ((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) → (𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇))
1413ad2ant2r 747 . . . . . . . . . . . 12 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → (𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇))
15 f1of 6800 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → 𝑔:(Vtx‘𝑅)⟶(Vtx‘𝑆))
1615ffvelcdmda 7056 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑔𝑟) ∈ (Vtx‘𝑆))
17 oveq2 7395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = (𝑔𝑟) → (𝑆 ClNeighbVtx 𝑠) = (𝑆 ClNeighbVtx (𝑔𝑟)))
1817oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = (𝑔𝑟) → (𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) = (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))
19 fveq2 6858 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑠 = (𝑔𝑟) → (𝑠) = (‘(𝑔𝑟)))
2019oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑠 = (𝑔𝑟) → (𝑇 ClNeighbVtx (𝑠)) = (𝑇 ClNeighbVtx (‘(𝑔𝑟))))
2120oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑠 = (𝑔𝑟) → (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) = (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟)))))
2218, 21breq12d 5120 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑠 = (𝑔𝑟) → ((𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟))))))
2322rspcv 3584 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔𝑟) ∈ (Vtx‘𝑆) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟))))))
2416, 23syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟))))))
25 fvco3 6960 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔:(Vtx‘𝑅)⟶(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑔)‘𝑟) = (‘(𝑔𝑟)))
2615, 25sylan 580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑔)‘𝑟) = (‘(𝑔𝑟)))
2726eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (‘(𝑔𝑟)) = ((𝑔)‘𝑟))
2827oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑇 ClNeighbVtx (‘(𝑔𝑟))) = (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))
2928oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟)))) = (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3029breq2d 5119 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (‘(𝑔𝑟)))) ↔ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
3124, 30sylibd 239 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
3231ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → (𝑟 ∈ (Vtx‘𝑅) → (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))))
3332com3r 87 . . . . . . . . . . . . . . . . . . . 20 (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) → (𝑟 ∈ (Vtx‘𝑅) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))))
3433imp31 417 . . . . . . . . . . . . . . . . . . 19 (((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) → (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3534anim1ci 616 . . . . . . . . . . . . . . . . . 18 ((((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) ∧ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ∧ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
36 grictr 47920 . . . . . . . . . . . . . . . . . 18 (((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ∧ (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3735, 36syl 17 . . . . . . . . . . . . . . . . 17 ((((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) ∧ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
3837ex 412 . . . . . . . . . . . . . . . 16 (((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) ∧ 𝑟 ∈ (Vtx‘𝑅)) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) → (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
3938ralimdva 3145 . . . . . . . . . . . . . . 15 ((∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) ∧ 𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆)) → (∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4039expimpd 453 . . . . . . . . . . . . . 14 (∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4140adantl 481 . . . . . . . . . . . . 13 ((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4241imp 406 . . . . . . . . . . . 12 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
4314, 42jca 511 . . . . . . . . . . 11 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → ((𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
44 f1oeq1 6788 . . . . . . . . . . . 12 (𝑓 = (𝑔) → (𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ↔ (𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇)))
45 fveq1 6857 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑔) → (𝑓𝑟) = ((𝑔)‘𝑟))
4645oveq2d 7403 . . . . . . . . . . . . . . 15 (𝑓 = (𝑔) → (𝑇 ClNeighbVtx (𝑓𝑟)) = (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))
4746oveq2d 7403 . . . . . . . . . . . . . 14 (𝑓 = (𝑔) → (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))) = (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))
4847breq2d 5119 . . . . . . . . . . . . 13 (𝑓 = (𝑔) → ((𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))) ↔ (𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
4948ralbidv 3156 . . . . . . . . . . . 12 (𝑓 = (𝑔) → (∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))) ↔ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟)))))
5044, 49anbi12d 632 . . . . . . . . . . 11 (𝑓 = (𝑔) → ((𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))) ↔ ((𝑔):(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx ((𝑔)‘𝑟))))))
5112, 43, 50spcedv 3564 . . . . . . . . . 10 (((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) ∧ (𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟))))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
5251ex 412 . . . . . . . . 9 ((:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5352exlimiv 1930 . . . . . . . 8 (∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5453com12 32 . . . . . . 7 ((𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → (∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5554exlimiv 1930 . . . . . 6 (∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) → (∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠)))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
5655imp 406 . . . . 5 ((∃𝑔(𝑔:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑆) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑆 ISubGr (𝑆 ClNeighbVtx (𝑔𝑟)))) ∧ ∃(:(Vtx‘𝑆)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑠 ∈ (Vtx‘𝑆)(𝑆 ISubGr (𝑆 ClNeighbVtx 𝑠)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑠))))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
576, 8, 56syl2an 596 . . . 4 ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
5857adantr 480 . . 3 (((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟)))))
594, 7dfgrlic2 47997 . . . . 5 ((𝑅 ∈ V ∧ 𝑇 ∈ V) → (𝑅𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
6059ad2ant2rl 749 . . . 4 (((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V)) → (𝑅𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
6160adantl 481 . . 3 (((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → (𝑅𝑙𝑔𝑟 𝑇 ↔ ∃𝑓(𝑓:(Vtx‘𝑅)–1-1-onto→(Vtx‘𝑇) ∧ ∀𝑟 ∈ (Vtx‘𝑅)(𝑅 ISubGr (𝑅 ClNeighbVtx 𝑟)) ≃𝑔𝑟 (𝑇 ISubGr (𝑇 ClNeighbVtx (𝑓𝑟))))))
6258, 61mpbird 257 . 2 (((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) ∧ ((𝑅 ∈ V ∧ 𝑆 ∈ V) ∧ (𝑆 ∈ V ∧ 𝑇 ∈ V))) → 𝑅𝑙𝑔𝑟 𝑇)
633, 62mpdan 687 1 ((𝑅𝑙𝑔𝑟 𝑆𝑆𝑙𝑔𝑟 𝑇) → 𝑅𝑙𝑔𝑟 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  Vcvv 3447   class class class wbr 5107  ccom 5642  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  Vtxcvtx 28923   ClNeighbVtx cclnbgr 47816   ISubGr cisubgr 47857  𝑔𝑟 cgric 47873  𝑙𝑔𝑟 cgrlic 47973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-1o 8434  df-map 8801  df-grim 47875  df-gric 47878  df-grlim 47974  df-grlic 47977
This theorem is referenced by:  grlicer  48005
  Copyright terms: Public domain W3C validator