MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubinv Structured version   Visualization version   GIF version

Theorem grpsubinv 18164
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
grpsubinv.b 𝐵 = (Base‘𝐺)
grpsubinv.p + = (+g𝐺)
grpsubinv.m = (-g𝐺)
grpsubinv.n 𝑁 = (invg𝐺)
grpsubinv.g (𝜑𝐺 ∈ Grp)
grpsubinv.x (𝜑𝑋𝐵)
grpsubinv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpsubinv (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))

Proof of Theorem grpsubinv
StepHypRef Expression
1 grpsubinv.x . . 3 (𝜑𝑋𝐵)
2 grpsubinv.g . . . 4 (𝜑𝐺 ∈ Grp)
3 grpsubinv.y . . . 4 (𝜑𝑌𝐵)
4 grpsubinv.b . . . . 5 𝐵 = (Base‘𝐺)
5 grpsubinv.n . . . . 5 𝑁 = (invg𝐺)
64, 5grpinvcl 18143 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
72, 3, 6syl2anc 587 . . 3 (𝜑 → (𝑁𝑌) ∈ 𝐵)
8 grpsubinv.p . . . 4 + = (+g𝐺)
9 grpsubinv.m . . . 4 = (-g𝐺)
104, 8, 5, 9grpsubval 18141 . . 3 ((𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
111, 7, 10syl2anc 587 . 2 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
124, 5grpinvinv 18158 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
132, 3, 12syl2anc 587 . . 3 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1413oveq2d 7151 . 2 (𝜑 → (𝑋 + (𝑁‘(𝑁𝑌))) = (𝑋 + 𝑌))
1511, 14eqtrd 2833 1 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  cfv 6324  (class class class)co 7135  Basecbs 16475  +gcplusg 16557  Grpcgrp 18095  invgcminusg 18096  -gcsg 18097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-0g 16707  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-grp 18098  df-minusg 18099  df-sbg 18100
This theorem is referenced by:  issubg4  18290  isnsg3  18304  lsmelvalm  18768  ablsub2inv  18924  ablsubsub4  18932  istgp2  22696  nmtri  23232  baerlem5amN  39012  baerlem5abmN  39014
  Copyright terms: Public domain W3C validator