MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubinv Structured version   Visualization version   GIF version

Theorem grpsubinv 18151
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
grpsubinv.b 𝐵 = (Base‘𝐺)
grpsubinv.p + = (+g𝐺)
grpsubinv.m = (-g𝐺)
grpsubinv.n 𝑁 = (invg𝐺)
grpsubinv.g (𝜑𝐺 ∈ Grp)
grpsubinv.x (𝜑𝑋𝐵)
grpsubinv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpsubinv (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))

Proof of Theorem grpsubinv
StepHypRef Expression
1 grpsubinv.x . . 3 (𝜑𝑋𝐵)
2 grpsubinv.g . . . 4 (𝜑𝐺 ∈ Grp)
3 grpsubinv.y . . . 4 (𝜑𝑌𝐵)
4 grpsubinv.b . . . . 5 𝐵 = (Base‘𝐺)
5 grpsubinv.n . . . . 5 𝑁 = (invg𝐺)
64, 5grpinvcl 18130 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
72, 3, 6syl2anc 587 . . 3 (𝜑 → (𝑁𝑌) ∈ 𝐵)
8 grpsubinv.p . . . 4 + = (+g𝐺)
9 grpsubinv.m . . . 4 = (-g𝐺)
104, 8, 5, 9grpsubval 18128 . . 3 ((𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
111, 7, 10syl2anc 587 . 2 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
124, 5grpinvinv 18145 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
132, 3, 12syl2anc 587 . . 3 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1413oveq2d 7146 . 2 (𝜑 → (𝑋 + (𝑁‘(𝑁𝑌))) = (𝑋 + 𝑌))
1511, 14eqtrd 2856 1 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115  cfv 6328  (class class class)co 7130  Basecbs 16462  +gcplusg 16544  Grpcgrp 18082  invgcminusg 18083  -gcsg 18084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793  ax-sep 5176  ax-nul 5183  ax-pow 5239  ax-pr 5303  ax-un 7436
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2623  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ne 3008  df-ral 3131  df-rex 3132  df-reu 3133  df-rmo 3134  df-rab 3135  df-v 3473  df-sbc 3750  df-csb 3858  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4267  df-if 4441  df-pw 4514  df-sn 4541  df-pr 4543  df-op 4547  df-uni 4812  df-iun 4894  df-br 5040  df-opab 5102  df-mpt 5120  df-id 5433  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-fv 6336  df-riota 7088  df-ov 7133  df-oprab 7134  df-mpo 7135  df-1st 7664  df-2nd 7665  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-minusg 18086  df-sbg 18087
This theorem is referenced by:  issubg4  18277  isnsg3  18291  lsmelvalm  18755  ablsub2inv  18910  ablsubsub4  18918  istgp2  22675  nmtri  23211  baerlem5amN  38898  baerlem5abmN  38900
  Copyright terms: Public domain W3C validator