MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpsubinv Structured version   Visualization version   GIF version

Theorem grpsubinv 18927
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.)
Hypotheses
Ref Expression
grpsubinv.b 𝐵 = (Base‘𝐺)
grpsubinv.p + = (+g𝐺)
grpsubinv.m = (-g𝐺)
grpsubinv.n 𝑁 = (invg𝐺)
grpsubinv.g (𝜑𝐺 ∈ Grp)
grpsubinv.x (𝜑𝑋𝐵)
grpsubinv.y (𝜑𝑌𝐵)
Assertion
Ref Expression
grpsubinv (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))

Proof of Theorem grpsubinv
StepHypRef Expression
1 grpsubinv.x . . 3 (𝜑𝑋𝐵)
2 grpsubinv.g . . . 4 (𝜑𝐺 ∈ Grp)
3 grpsubinv.y . . . 4 (𝜑𝑌𝐵)
4 grpsubinv.b . . . . 5 𝐵 = (Base‘𝐺)
5 grpsubinv.n . . . . 5 𝑁 = (invg𝐺)
64, 5grpinvcl 18902 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁𝑌) ∈ 𝐵)
72, 3, 6syl2anc 584 . . 3 (𝜑 → (𝑁𝑌) ∈ 𝐵)
8 grpsubinv.p . . . 4 + = (+g𝐺)
9 grpsubinv.m . . . 4 = (-g𝐺)
104, 8, 5, 9grpsubval 18900 . . 3 ((𝑋𝐵 ∧ (𝑁𝑌) ∈ 𝐵) → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
111, 7, 10syl2anc 584 . 2 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + (𝑁‘(𝑁𝑌))))
124, 5grpinvinv 18920 . . . 4 ((𝐺 ∈ Grp ∧ 𝑌𝐵) → (𝑁‘(𝑁𝑌)) = 𝑌)
132, 3, 12syl2anc 584 . . 3 (𝜑 → (𝑁‘(𝑁𝑌)) = 𝑌)
1413oveq2d 7368 . 2 (𝜑 → (𝑋 + (𝑁‘(𝑁𝑌))) = (𝑋 + 𝑌))
1511, 14eqtrd 2768 1 (𝜑 → (𝑋 (𝑁𝑌)) = (𝑋 + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cfv 6486  (class class class)co 7352  Basecbs 17122  +gcplusg 17163  Grpcgrp 18848  invgcminusg 18849  -gcsg 18850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-0g 17347  df-mgm 18550  df-sgrp 18629  df-mnd 18645  df-grp 18851  df-minusg 18852  df-sbg 18853
This theorem is referenced by:  issubg4  19060  isnsg3  19074  lsmelvalm  19565  ablsub2inv  19722  ablsubsub4  19732  istgp2  24007  nmtri  24542  baerlem5amN  41836  baerlem5abmN  41838
  Copyright terms: Public domain W3C validator