![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpsubinv | Structured version Visualization version GIF version |
Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.) |
Ref | Expression |
---|---|
grpsubinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpsubinv.p | ⊢ + = (+g‘𝐺) |
grpsubinv.m | ⊢ − = (-g‘𝐺) |
grpsubinv.n | ⊢ 𝑁 = (invg‘𝐺) |
grpsubinv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
grpsubinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
grpsubinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
grpsubinv | ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpsubinv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
2 | grpsubinv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
3 | grpsubinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
4 | grpsubinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
5 | grpsubinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
6 | 4, 5 | grpinvcl 19018 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
7 | 2, 3, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
8 | grpsubinv.p | . . . 4 ⊢ + = (+g‘𝐺) | |
9 | grpsubinv.m | . . . 4 ⊢ − = (-g‘𝐺) | |
10 | 4, 8, 5, 9 | grpsubval 19016 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑋 − (𝑁‘𝑌)) = (𝑋 + (𝑁‘(𝑁‘𝑌)))) |
11 | 1, 7, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + (𝑁‘(𝑁‘𝑌)))) |
12 | 4, 5 | grpinvinv 19036 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
13 | 2, 3, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
14 | 13 | oveq2d 7447 | . 2 ⊢ (𝜑 → (𝑋 + (𝑁‘(𝑁‘𝑌))) = (𝑋 + 𝑌)) |
15 | 11, 14 | eqtrd 2775 | 1 ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 Grpcgrp 18964 invgcminusg 18965 -gcsg 18966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-0g 17488 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-grp 18967 df-minusg 18968 df-sbg 18969 |
This theorem is referenced by: issubg4 19176 isnsg3 19191 lsmelvalm 19684 ablsub2inv 19841 ablsubsub4 19851 istgp2 24115 nmtri 24655 baerlem5amN 41699 baerlem5abmN 41701 |
Copyright terms: Public domain | W3C validator |