| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpsubinv | Structured version Visualization version GIF version | ||
| Description: Subtraction of an inverse. (Contributed by NM, 7-Apr-2015.) |
| Ref | Expression |
|---|---|
| grpsubinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpsubinv.p | ⊢ + = (+g‘𝐺) |
| grpsubinv.m | ⊢ − = (-g‘𝐺) |
| grpsubinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| grpsubinv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| grpsubinv.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| grpsubinv.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| grpsubinv | ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpsubinv.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 2 | grpsubinv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 3 | grpsubinv.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | grpsubinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 5 | grpsubinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 6 | 4, 5 | grpinvcl 18970 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘𝑌) ∈ 𝐵) |
| 7 | 2, 3, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 8 | grpsubinv.p | . . . 4 ⊢ + = (+g‘𝐺) | |
| 9 | grpsubinv.m | . . . 4 ⊢ − = (-g‘𝐺) | |
| 10 | 4, 8, 5, 9 | grpsubval 18968 | . . 3 ⊢ ((𝑋 ∈ 𝐵 ∧ (𝑁‘𝑌) ∈ 𝐵) → (𝑋 − (𝑁‘𝑌)) = (𝑋 + (𝑁‘(𝑁‘𝑌)))) |
| 11 | 1, 7, 10 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + (𝑁‘(𝑁‘𝑌)))) |
| 12 | 4, 5 | grpinvinv 18988 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝐵) → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 13 | 2, 3, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑌)) = 𝑌) |
| 14 | 13 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝑋 + (𝑁‘(𝑁‘𝑌))) = (𝑋 + 𝑌)) |
| 15 | 11, 14 | eqtrd 2770 | 1 ⊢ (𝜑 → (𝑋 − (𝑁‘𝑌)) = (𝑋 + 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 Grpcgrp 18916 invgcminusg 18917 -gcsg 18918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-sbg 18921 |
| This theorem is referenced by: issubg4 19128 isnsg3 19143 lsmelvalm 19632 ablsub2inv 19789 ablsubsub4 19799 istgp2 24029 nmtri 24565 baerlem5amN 41735 baerlem5abmN 41737 |
| Copyright terms: Public domain | W3C validator |