Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5bmN Structured version   Visualization version   GIF version

Theorem baerlem5bmN 41704
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Subtraction version of second equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 41705 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5bmN (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5bmN
StepHypRef Expression
1 baerlem3.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21eldifad 3923 . . . . 5 (𝜑𝑌𝑉)
3 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
43eldifad 3923 . . . . 5 (𝜑𝑍𝑉)
5 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
6 baerlem5a.p . . . . . 6 + = (+g𝑊)
7 eqid 2729 . . . . . 6 (invg𝑊) = (invg𝑊)
8 baerlem3.m . . . . . 6 = (-g𝑊)
95, 6, 7, 8grpsubval 18899 . . . . 5 ((𝑌𝑉𝑍𝑉) → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
102, 4, 9syl2anc 584 . . . 4 (𝜑 → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
1110sneqd 4597 . . 3 (𝜑 → {(𝑌 𝑍)} = {(𝑌 + ((invg𝑊)‘𝑍))})
1211fveq2d 6844 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}))
13 baerlem3.o . . 3 0 = (0g𝑊)
14 baerlem3.s . . 3 = (LSSum‘𝑊)
15 baerlem3.n . . 3 𝑁 = (LSpan‘𝑊)
16 baerlem3.w . . 3 (𝜑𝑊 ∈ LVec)
17 baerlem3.x . . 3 (𝜑𝑋𝑉)
18 lveclmod 21045 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1916, 18syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
205, 7lmodvnegcl 20841 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((invg𝑊)‘𝑍) ∈ 𝑉)
2119, 4, 20syl2anc 584 . . . 4 (𝜑 → ((invg𝑊)‘𝑍) ∈ 𝑉)
22 eqid 2729 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
235, 22, 15, 19, 2, 4lspprcl 20916 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
24 baerlem3.c . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2513, 22, 19, 23, 17, 24lssneln0 20891 . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
265, 15, 16, 17, 2, 4, 24lspindpi 21074 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2726simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
285, 13, 15, 16, 25, 2, 27lspsnne1 21059 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
29 baerlem3.d . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
3029necomd 2980 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))
315, 13, 15, 16, 3, 2, 30lspsnne1 21059 . . . . . 6 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌}))
325, 15, 16, 17, 4, 2, 31, 24lspexchn2 21073 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
33 lmodgrp 20805 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
3419, 33syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
3534adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp)
364adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍𝑉)
375, 7grpinvinv 18919 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑍𝑉) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3835, 36, 37syl2anc 584 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3919adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod)
405, 22, 15, 19, 2, 17lspprcl 20916 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
4140adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
42 simpr 484 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
4322, 7lssvnegcl 20894 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4439, 41, 42, 43syl3anc 1373 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4538, 44eqeltrrd 2829 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
4632, 45mtand 815 . . . 4 (𝜑 → ¬ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
475, 15, 16, 21, 17, 2, 28, 46lspexchn2 21073 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg𝑊)‘𝑍)}))
485, 7, 15lspsnneg 20944 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
4919, 4, 48syl2anc 584 . . . 4 (𝜑 → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5029, 49neeqtrrd 2999 . . 3 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg𝑊)‘𝑍)}))
515, 13, 7grpinvnzcl 18925 . . . 4 ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
5234, 3, 51syl2anc 584 . . 3 (𝜑 → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
535, 8, 13, 14, 15, 16, 17, 47, 50, 1, 52, 6baerlem5b 41702 . 2 (𝜑 → (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}) = (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))))
5449oveq2d 7385 . . 3 (𝜑 → ((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
5510eqcomd 2735 . . . . . . 7 (𝜑 → (𝑌 + ((invg𝑊)‘𝑍)) = (𝑌 𝑍))
5655oveq2d 7385 . . . . . 6 (𝜑 → (𝑋 (𝑌 + ((invg𝑊)‘𝑍))) = (𝑋 (𝑌 𝑍)))
5756sneqd 4597 . . . . 5 (𝜑 → {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))} = {(𝑋 (𝑌 𝑍))})
5857fveq2d 6844 . . . 4 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (𝑁‘{(𝑋 (𝑌 𝑍))}))
5958oveq1d 7384 . . 3 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋})) = ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))
6054, 59ineq12d 4180 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
6112, 53, 603eqtrd 2768 1 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3908  cin 3910  {csn 4585  {cpr 4587  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  0gc0g 17378  Grpcgrp 18847  invgcminusg 18848  -gcsg 18849  LSSumclsm 19548  LModclmod 20798  LSubSpclss 20869  LSpanclspn 20909  LVecclvec 21041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-0g 17380  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cntz 19231  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lvec 21042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator