Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5bmN Structured version   Visualization version   GIF version

Theorem baerlem5bmN 38733
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Subtraction version of second equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 38734 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5bmN (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))

Proof of Theorem baerlem5bmN
StepHypRef Expression
1 baerlem3.y . . . . . 6 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21eldifad 3945 . . . . 5 (𝜑𝑌𝑉)
3 baerlem3.z . . . . . 6 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
43eldifad 3945 . . . . 5 (𝜑𝑍𝑉)
5 baerlem3.v . . . . . 6 𝑉 = (Base‘𝑊)
6 baerlem5a.p . . . . . 6 + = (+g𝑊)
7 eqid 2818 . . . . . 6 (invg𝑊) = (invg𝑊)
8 baerlem3.m . . . . . 6 = (-g𝑊)
95, 6, 7, 8grpsubval 18087 . . . . 5 ((𝑌𝑉𝑍𝑉) → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
102, 4, 9syl2anc 584 . . . 4 (𝜑 → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
1110sneqd 4569 . . 3 (𝜑 → {(𝑌 𝑍)} = {(𝑌 + ((invg𝑊)‘𝑍))})
1211fveq2d 6667 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}))
13 baerlem3.o . . 3 0 = (0g𝑊)
14 baerlem3.s . . 3 = (LSSum‘𝑊)
15 baerlem3.n . . 3 𝑁 = (LSpan‘𝑊)
16 baerlem3.w . . 3 (𝜑𝑊 ∈ LVec)
17 baerlem3.x . . 3 (𝜑𝑋𝑉)
18 lveclmod 19807 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
1916, 18syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
205, 7lmodvnegcl 19604 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((invg𝑊)‘𝑍) ∈ 𝑉)
2119, 4, 20syl2anc 584 . . . 4 (𝜑 → ((invg𝑊)‘𝑍) ∈ 𝑉)
22 eqid 2818 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
235, 22, 15, 19, 2, 4lspprcl 19679 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
24 baerlem3.c . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2513, 22, 19, 23, 17, 24lssneln0 19653 . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
265, 15, 16, 17, 2, 4, 24lspindpi 19833 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2726simpld 495 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
285, 13, 15, 16, 25, 2, 27lspsnne1 19818 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
29 baerlem3.d . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
3029necomd 3068 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))
315, 13, 15, 16, 3, 2, 30lspsnne1 19818 . . . . . 6 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌}))
325, 15, 16, 17, 4, 2, 31, 24lspexchn2 19832 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
33 lmodgrp 19570 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
3419, 33syl 17 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
3534adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp)
364adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍𝑉)
375, 7grpinvinv 18104 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑍𝑉) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3835, 36, 37syl2anc 584 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3919adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod)
405, 22, 15, 19, 2, 17lspprcl 19679 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
4140adantr 481 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
42 simpr 485 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
4322, 7lssvnegcl 19657 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4439, 41, 42, 43syl3anc 1363 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4538, 44eqeltrrd 2911 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
4632, 45mtand 812 . . . 4 (𝜑 → ¬ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
475, 15, 16, 21, 17, 2, 28, 46lspexchn2 19832 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg𝑊)‘𝑍)}))
485, 7, 15lspsnneg 19707 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
4919, 4, 48syl2anc 584 . . . 4 (𝜑 → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5029, 49neeqtrrd 3087 . . 3 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg𝑊)‘𝑍)}))
515, 13, 7grpinvnzcl 18109 . . . 4 ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
5234, 3, 51syl2anc 584 . . 3 (𝜑 → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
535, 8, 13, 14, 15, 16, 17, 47, 50, 1, 52, 6baerlem5b 38731 . 2 (𝜑 → (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}) = (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))))
5449oveq2d 7161 . . 3 (𝜑 → ((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
5510eqcomd 2824 . . . . . . 7 (𝜑 → (𝑌 + ((invg𝑊)‘𝑍)) = (𝑌 𝑍))
5655oveq2d 7161 . . . . . 6 (𝜑 → (𝑋 (𝑌 + ((invg𝑊)‘𝑍))) = (𝑋 (𝑌 𝑍)))
5756sneqd 4569 . . . . 5 (𝜑 → {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))} = {(𝑋 (𝑌 𝑍))})
5857fveq2d 6667 . . . 4 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (𝑁‘{(𝑋 (𝑌 𝑍))}))
5958oveq1d 7160 . . 3 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋})) = ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))
6054, 59ineq12d 4187 . 2 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
6112, 53, 603eqtrd 2857 1 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  cdif 3930  cin 3932  {csn 4557  {cpr 4559  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  0gc0g 16701  Grpcgrp 18041  invgcminusg 18042  -gcsg 18043  LSSumclsm 18688  LModclmod 19563  LSubSpclss 19632  LSpanclspn 19672  LVecclvec 19803
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-0g 16703  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-cntz 18385  df-lsm 18690  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-oppr 19302  df-dvdsr 19320  df-unit 19321  df-invr 19351  df-drng 19433  df-lmod 19565  df-lss 19633  df-lsp 19673  df-lvec 19804
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator