Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5bmN Structured version   Visualization version   GIF version

Theorem baerlem5bmN 40588
Description: An equality that holds when 𝑋, π‘Œ, 𝑍 are independent (non-colinear) vectors. Subtraction version of second equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 40589 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Baseβ€˜π‘Š)
baerlem3.m βˆ’ = (-gβ€˜π‘Š)
baerlem3.o 0 = (0gβ€˜π‘Š)
baerlem3.s βŠ• = (LSSumβ€˜π‘Š)
baerlem3.n 𝑁 = (LSpanβ€˜π‘Š)
baerlem3.w (πœ‘ β†’ π‘Š ∈ LVec)
baerlem3.x (πœ‘ β†’ 𝑋 ∈ 𝑉)
baerlem3.c (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
baerlem3.d (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
baerlem3.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
baerlem3.z (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
baerlem5a.p + = (+gβ€˜π‘Š)
Assertion
Ref Expression
baerlem5bmN (πœ‘ β†’ (π‘β€˜{(π‘Œ βˆ’ 𝑍)}) = (((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ βˆ’ 𝑍))}) βŠ• (π‘β€˜{𝑋}))))

Proof of Theorem baerlem5bmN
StepHypRef Expression
1 baerlem3.y . . . . . 6 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
21eldifad 3961 . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑉)
3 baerlem3.z . . . . . 6 (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
43eldifad 3961 . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑉)
5 baerlem3.v . . . . . 6 𝑉 = (Baseβ€˜π‘Š)
6 baerlem5a.p . . . . . 6 + = (+gβ€˜π‘Š)
7 eqid 2733 . . . . . 6 (invgβ€˜π‘Š) = (invgβ€˜π‘Š)
8 baerlem3.m . . . . . 6 βˆ’ = (-gβ€˜π‘Š)
95, 6, 7, 8grpsubval 18870 . . . . 5 ((π‘Œ ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) β†’ (π‘Œ βˆ’ 𝑍) = (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)))
102, 4, 9syl2anc 585 . . . 4 (πœ‘ β†’ (π‘Œ βˆ’ 𝑍) = (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)))
1110sneqd 4641 . . 3 (πœ‘ β†’ {(π‘Œ βˆ’ 𝑍)} = {(π‘Œ + ((invgβ€˜π‘Š)β€˜π‘))})
1211fveq2d 6896 . 2 (πœ‘ β†’ (π‘β€˜{(π‘Œ βˆ’ 𝑍)}) = (π‘β€˜{(π‘Œ + ((invgβ€˜π‘Š)β€˜π‘))}))
13 baerlem3.o . . 3 0 = (0gβ€˜π‘Š)
14 baerlem3.s . . 3 βŠ• = (LSSumβ€˜π‘Š)
15 baerlem3.n . . 3 𝑁 = (LSpanβ€˜π‘Š)
16 baerlem3.w . . 3 (πœ‘ β†’ π‘Š ∈ LVec)
17 baerlem3.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝑉)
18 lveclmod 20717 . . . . . 6 (π‘Š ∈ LVec β†’ π‘Š ∈ LMod)
1916, 18syl 17 . . . . 5 (πœ‘ β†’ π‘Š ∈ LMod)
205, 7lmodvnegcl 20513 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑍 ∈ 𝑉) β†’ ((invgβ€˜π‘Š)β€˜π‘) ∈ 𝑉)
2119, 4, 20syl2anc 585 . . . 4 (πœ‘ β†’ ((invgβ€˜π‘Š)β€˜π‘) ∈ 𝑉)
22 eqid 2733 . . . . . 6 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
235, 22, 15, 19, 2, 4lspprcl 20589 . . . . . 6 (πœ‘ β†’ (π‘β€˜{π‘Œ, 𝑍}) ∈ (LSubSpβ€˜π‘Š))
24 baerlem3.c . . . . . 6 (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
2513, 22, 19, 23, 17, 24lssneln0 20563 . . . . 5 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
265, 15, 16, 17, 2, 4, 24lspindpi 20745 . . . . . 6 (πœ‘ β†’ ((π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}) ∧ (π‘β€˜{𝑋}) β‰  (π‘β€˜{𝑍})))
2726simpld 496 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
285, 13, 15, 16, 25, 2, 27lspsnne1 20730 . . . 4 (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ}))
29 baerlem3.d . . . . . . . 8 (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
3029necomd 2997 . . . . . . 7 (πœ‘ β†’ (π‘β€˜{𝑍}) β‰  (π‘β€˜{π‘Œ}))
315, 13, 15, 16, 3, 2, 30lspsnne1 20730 . . . . . 6 (πœ‘ β†’ Β¬ 𝑍 ∈ (π‘β€˜{π‘Œ}))
325, 15, 16, 17, 4, 2, 31, 24lspexchn2 20744 . . . . 5 (πœ‘ β†’ Β¬ 𝑍 ∈ (π‘β€˜{π‘Œ, 𝑋}))
33 lmodgrp 20478 . . . . . . . . 9 (π‘Š ∈ LMod β†’ π‘Š ∈ Grp)
3419, 33syl 17 . . . . . . . 8 (πœ‘ β†’ π‘Š ∈ Grp)
3534adantr 482 . . . . . . 7 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ π‘Š ∈ Grp)
364adantr 482 . . . . . . 7 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ 𝑍 ∈ 𝑉)
375, 7grpinvinv 18890 . . . . . . 7 ((π‘Š ∈ Grp ∧ 𝑍 ∈ 𝑉) β†’ ((invgβ€˜π‘Š)β€˜((invgβ€˜π‘Š)β€˜π‘)) = 𝑍)
3835, 36, 37syl2anc 585 . . . . . 6 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ ((invgβ€˜π‘Š)β€˜((invgβ€˜π‘Š)β€˜π‘)) = 𝑍)
3919adantr 482 . . . . . . 7 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ π‘Š ∈ LMod)
405, 22, 15, 19, 2, 17lspprcl 20589 . . . . . . . 8 (πœ‘ β†’ (π‘β€˜{π‘Œ, 𝑋}) ∈ (LSubSpβ€˜π‘Š))
4140adantr 482 . . . . . . 7 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ (π‘β€˜{π‘Œ, 𝑋}) ∈ (LSubSpβ€˜π‘Š))
42 simpr 486 . . . . . . 7 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋}))
4322, 7lssvnegcl 20567 . . . . . . 7 ((π‘Š ∈ LMod ∧ (π‘β€˜{π‘Œ, 𝑋}) ∈ (LSubSpβ€˜π‘Š) ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ ((invgβ€˜π‘Š)β€˜((invgβ€˜π‘Š)β€˜π‘)) ∈ (π‘β€˜{π‘Œ, 𝑋}))
4439, 41, 42, 43syl3anc 1372 . . . . . 6 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ ((invgβ€˜π‘Š)β€˜((invgβ€˜π‘Š)β€˜π‘)) ∈ (π‘β€˜{π‘Œ, 𝑋}))
4538, 44eqeltrrd 2835 . . . . 5 ((πœ‘ ∧ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋})) β†’ 𝑍 ∈ (π‘β€˜{π‘Œ, 𝑋}))
4632, 45mtand 815 . . . 4 (πœ‘ β†’ Β¬ ((invgβ€˜π‘Š)β€˜π‘) ∈ (π‘β€˜{π‘Œ, 𝑋}))
475, 15, 16, 21, 17, 2, 28, 46lspexchn2 20744 . . 3 (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, ((invgβ€˜π‘Š)β€˜π‘)}))
485, 7, 15lspsnneg 20617 . . . . 5 ((π‘Š ∈ LMod ∧ 𝑍 ∈ 𝑉) β†’ (π‘β€˜{((invgβ€˜π‘Š)β€˜π‘)}) = (π‘β€˜{𝑍}))
4919, 4, 48syl2anc 585 . . . 4 (πœ‘ β†’ (π‘β€˜{((invgβ€˜π‘Š)β€˜π‘)}) = (π‘β€˜{𝑍}))
5029, 49neeqtrrd 3016 . . 3 (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{((invgβ€˜π‘Š)β€˜π‘)}))
515, 13, 7grpinvnzcl 18895 . . . 4 ((π‘Š ∈ Grp ∧ 𝑍 ∈ (𝑉 βˆ– { 0 })) β†’ ((invgβ€˜π‘Š)β€˜π‘) ∈ (𝑉 βˆ– { 0 }))
5234, 3, 51syl2anc 585 . . 3 (πœ‘ β†’ ((invgβ€˜π‘Š)β€˜π‘) ∈ (𝑉 βˆ– { 0 }))
535, 8, 13, 14, 15, 16, 17, 47, 50, 1, 52, 6baerlem5b 40586 . 2 (πœ‘ β†’ (π‘β€˜{(π‘Œ + ((invgβ€˜π‘Š)β€˜π‘))}) = (((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{((invgβ€˜π‘Š)β€˜π‘)})) ∩ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)))}) βŠ• (π‘β€˜{𝑋}))))
5449oveq2d 7425 . . 3 (πœ‘ β†’ ((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{((invgβ€˜π‘Š)β€˜π‘)})) = ((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{𝑍})))
5510eqcomd 2739 . . . . . . 7 (πœ‘ β†’ (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)) = (π‘Œ βˆ’ 𝑍))
5655oveq2d 7425 . . . . . 6 (πœ‘ β†’ (𝑋 βˆ’ (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘))) = (𝑋 βˆ’ (π‘Œ βˆ’ 𝑍)))
5756sneqd 4641 . . . . 5 (πœ‘ β†’ {(𝑋 βˆ’ (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)))} = {(𝑋 βˆ’ (π‘Œ βˆ’ 𝑍))})
5857fveq2d 6896 . . . 4 (πœ‘ β†’ (π‘β€˜{(𝑋 βˆ’ (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)))}) = (π‘β€˜{(𝑋 βˆ’ (π‘Œ βˆ’ 𝑍))}))
5958oveq1d 7424 . . 3 (πœ‘ β†’ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)))}) βŠ• (π‘β€˜{𝑋})) = ((π‘β€˜{(𝑋 βˆ’ (π‘Œ βˆ’ 𝑍))}) βŠ• (π‘β€˜{𝑋})))
6054, 59ineq12d 4214 . 2 (πœ‘ β†’ (((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{((invgβ€˜π‘Š)β€˜π‘)})) ∩ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ + ((invgβ€˜π‘Š)β€˜π‘)))}) βŠ• (π‘β€˜{𝑋}))) = (((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ βˆ’ 𝑍))}) βŠ• (π‘β€˜{𝑋}))))
6112, 53, 603eqtrd 2777 1 (πœ‘ β†’ (π‘β€˜{(π‘Œ βˆ’ 𝑍)}) = (((π‘β€˜{π‘Œ}) βŠ• (π‘β€˜{𝑍})) ∩ ((π‘β€˜{(𝑋 βˆ’ (π‘Œ βˆ’ 𝑍))}) βŠ• (π‘β€˜{𝑋}))))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2941   βˆ– cdif 3946   ∩ cin 3948  {csn 4629  {cpr 4631  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144  +gcplusg 17197  0gc0g 17385  Grpcgrp 18819  invgcminusg 18820  -gcsg 18821  LSSumclsm 19502  LModclmod 20471  LSubSpclss 20542  LSpanclspn 20582  LVecclvec 20713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-tpos 8211  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-0g 17387  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-subg 19003  df-cntz 19181  df-lsm 19504  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-oppr 20150  df-dvdsr 20171  df-unit 20172  df-invr 20202  df-drng 20359  df-lmod 20473  df-lss 20543  df-lsp 20583  df-lvec 20714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator