Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5amN Structured version   Visualization version   GIF version

Theorem baerlem5amN 41734
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Subtraction version of first equation of part (5) in [Baer] p. 46. TODO: This is the subtraction version, may not be needed. TODO: delete if baerlem5abmN 41736 is used. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5amN (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))

Proof of Theorem baerlem5amN
StepHypRef Expression
1 baerlem3.y . . . . . . 7 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21eldifad 3912 . . . . . 6 (𝜑𝑌𝑉)
3 baerlem3.z . . . . . . 7 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
43eldifad 3912 . . . . . 6 (𝜑𝑍𝑉)
5 baerlem3.v . . . . . . 7 𝑉 = (Base‘𝑊)
6 baerlem5a.p . . . . . . 7 + = (+g𝑊)
7 eqid 2730 . . . . . . 7 (invg𝑊) = (invg𝑊)
8 baerlem3.m . . . . . . 7 = (-g𝑊)
95, 6, 7, 8grpsubval 18890 . . . . . 6 ((𝑌𝑉𝑍𝑉) → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
102, 4, 9syl2anc 584 . . . . 5 (𝜑 → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
1110oveq2d 7357 . . . 4 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 (𝑌 + ((invg𝑊)‘𝑍))))
1211sneqd 4586 . . 3 (𝜑 → {(𝑋 (𝑌 𝑍))} = {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))})
1312fveq2d 6821 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}))
14 baerlem3.o . . 3 0 = (0g𝑊)
15 baerlem3.s . . 3 = (LSSum‘𝑊)
16 baerlem3.n . . 3 𝑁 = (LSpan‘𝑊)
17 baerlem3.w . . 3 (𝜑𝑊 ∈ LVec)
18 baerlem3.x . . 3 (𝜑𝑋𝑉)
19 lveclmod 21033 . . . . . 6 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2017, 19syl 17 . . . . 5 (𝜑𝑊 ∈ LMod)
215, 7lmodvnegcl 20829 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((invg𝑊)‘𝑍) ∈ 𝑉)
2220, 4, 21syl2anc 584 . . . 4 (𝜑 → ((invg𝑊)‘𝑍) ∈ 𝑉)
23 eqid 2730 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
245, 23, 16, 20, 2, 4lspprcl 20904 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
25 baerlem3.c . . . . . 6 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2614, 23, 20, 24, 18, 25lssneln0 20879 . . . . 5 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
275, 16, 17, 18, 2, 4, 25lspindpi 21062 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
295, 14, 16, 17, 26, 2, 28lspsnne1 21047 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
30 baerlem3.d . . . . . . . 8 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
3130necomd 2981 . . . . . . 7 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))
325, 14, 16, 17, 3, 2, 31lspsnne1 21047 . . . . . 6 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌}))
335, 16, 17, 18, 4, 2, 32, 25lspexchn2 21061 . . . . 5 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
34 lmodgrp 20793 . . . . . . . . 9 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
3517, 19, 343syl 18 . . . . . . . 8 (𝜑𝑊 ∈ Grp)
3635adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp)
374adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍𝑉)
385, 7grpinvinv 18910 . . . . . . 7 ((𝑊 ∈ Grp ∧ 𝑍𝑉) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3936, 37, 38syl2anc 584 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
4020adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod)
415, 23, 16, 20, 2, 18lspprcl 20904 . . . . . . . 8 (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
4241adantr 480 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
43 simpr 484 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
4423, 7lssvnegcl 20882 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4540, 42, 43, 44syl3anc 1373 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4639, 45eqeltrrd 2830 . . . . 5 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
4733, 46mtand 815 . . . 4 (𝜑 → ¬ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
485, 16, 17, 22, 18, 2, 29, 47lspexchn2 21061 . . 3 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg𝑊)‘𝑍)}))
495, 7, 16lspsnneg 20932 . . . . 5 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5020, 4, 49syl2anc 584 . . . 4 (𝜑 → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5130, 50neeqtrrd 3000 . . 3 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg𝑊)‘𝑍)}))
525, 14, 7grpinvnzcl 18916 . . . 4 ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
5335, 3, 52syl2anc 584 . . 3 (𝜑 → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
545, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6baerlem5a 41732 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))))
5550oveq2d 7357 . . 3 (𝜑 → ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
565, 6, 8, 7, 35, 18, 4grpsubinv 18917 . . . . . 6 (𝜑 → (𝑋 ((invg𝑊)‘𝑍)) = (𝑋 + 𝑍))
5756sneqd 4586 . . . . 5 (𝜑 → {(𝑋 ((invg𝑊)‘𝑍))} = {(𝑋 + 𝑍)})
5857fveq2d 6821 . . . 4 (𝜑 → (𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) = (𝑁‘{(𝑋 + 𝑍)}))
5958oveq1d 7356 . . 3 (𝜑 → ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌})) = ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌})))
6055, 59ineq12d 4169 . 2 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
6113, 54, 603eqtrd 2769 1 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2110  wne 2926  cdif 3897  cin 3899  {csn 4574  {cpr 4576  cfv 6477  (class class class)co 7341  Basecbs 17112  +gcplusg 17153  0gc0g 17335  Grpcgrp 18838  invgcminusg 18839  -gcsg 18840  LSSumclsm 19539  LModclmod 20786  LSubSpclss 20857  LSpanclspn 20897  LVecclvec 21029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-tpos 8151  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-nn 12118  df-2 12180  df-3 12181  df-sets 17067  df-slot 17085  df-ndx 17097  df-base 17113  df-ress 17134  df-plusg 17166  df-mulr 17167  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-submnd 18684  df-grp 18841  df-minusg 18842  df-sbg 18843  df-subg 19028  df-cntz 19222  df-lsm 19541  df-cmn 19687  df-abl 19688  df-mgp 20052  df-rng 20064  df-ur 20093  df-ring 20146  df-oppr 20248  df-dvdsr 20268  df-unit 20269  df-invr 20299  df-drng 20639  df-lmod 20788  df-lss 20858  df-lsp 20898  df-lvec 21030
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator