Proof of Theorem baerlem5abmN
Step | Hyp | Ref
| Expression |
1 | | baerlem3.y |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
2 | 1 | eldifad 3895 |
. . . . . . 7
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
3 | | baerlem3.z |
. . . . . . . 8
⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
4 | 3 | eldifad 3895 |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ 𝑉) |
5 | | baerlem3.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
6 | | baerlem5a.p |
. . . . . . . 8
⊢ + =
(+g‘𝑊) |
7 | | eqid 2738 |
. . . . . . . 8
⊢
(invg‘𝑊) = (invg‘𝑊) |
8 | | baerlem3.m |
. . . . . . . 8
⊢ − =
(-g‘𝑊) |
9 | 5, 6, 7, 8 | grpsubval 18540 |
. . . . . . 7
⊢ ((𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 − 𝑍) = (𝑌 +
((invg‘𝑊)‘𝑍))) |
10 | 2, 4, 9 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌 +
((invg‘𝑊)‘𝑍))) |
11 | 10 | oveq2d 7271 |
. . . . 5
⊢ (𝜑 → (𝑋 − (𝑌 − 𝑍)) = (𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))) |
12 | 11 | sneqd 4570 |
. . . 4
⊢ (𝜑 → {(𝑋 − (𝑌 − 𝑍))} = {(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))}) |
13 | 12 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (𝑁‘{(𝑋 − (𝑌 − 𝑍))}) = (𝑁‘{(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))})) |
14 | | baerlem3.o |
. . . 4
⊢ 0 =
(0g‘𝑊) |
15 | | baerlem3.s |
. . . 4
⊢ ⊕ =
(LSSum‘𝑊) |
16 | | baerlem3.n |
. . . 4
⊢ 𝑁 = (LSpan‘𝑊) |
17 | | baerlem3.w |
. . . 4
⊢ (𝜑 → 𝑊 ∈ LVec) |
18 | | baerlem3.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
19 | | lveclmod 20283 |
. . . . . . 7
⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) |
20 | 17, 19 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ LMod) |
21 | 5, 7 | lmodvnegcl 20079 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → ((invg‘𝑊)‘𝑍) ∈ 𝑉) |
22 | 20, 4, 21 | syl2anc 583 |
. . . . 5
⊢ (𝜑 →
((invg‘𝑊)‘𝑍) ∈ 𝑉) |
23 | | eqid 2738 |
. . . . . . 7
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
24 | 5, 23, 16, 20, 2, 4 | lspprcl 20155 |
. . . . . . 7
⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊)) |
25 | | baerlem3.c |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
26 | 14, 23, 20, 24, 18, 25 | lssneln0 20129 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
27 | 5, 16, 17, 18, 2, 4, 25 | lspindpi 20309 |
. . . . . . 7
⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
28 | 27 | simpld 494 |
. . . . . 6
⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
29 | 5, 14, 16, 17, 26, 2, 28 | lspsnne1 20294 |
. . . . 5
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌})) |
30 | | baerlem3.d |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
31 | 30 | necomd 2998 |
. . . . . . . 8
⊢ (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌})) |
32 | 5, 14, 16, 17, 3, 2, 31 | lspsnne1 20294 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌})) |
33 | 5, 16, 17, 18, 4, 2, 32, 25 | lspexchn2 20308 |
. . . . . 6
⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋})) |
34 | | lmodgrp 20045 |
. . . . . . . . . 10
⊢ (𝑊 ∈ LMod → 𝑊 ∈ Grp) |
35 | 17, 19, 34 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → 𝑊 ∈ Grp) |
36 | 35 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp) |
37 | 4 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ 𝑉) |
38 | 5, 7 | grpinvinv 18557 |
. . . . . . . 8
⊢ ((𝑊 ∈ Grp ∧ 𝑍 ∈ 𝑉) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑍)) = 𝑍) |
39 | 36, 37, 38 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑍)) = 𝑍) |
40 | 20 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod) |
41 | 5, 23, 16, 20, 2, 18 | lspprcl 20155 |
. . . . . . . . 9
⊢ (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊)) |
42 | 41 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊)) |
43 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) |
44 | 23, 7 | lssvnegcl 20133 |
. . . . . . . 8
⊢ ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋})) |
45 | 40, 42, 43, 44 | syl3anc 1369 |
. . . . . . 7
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg‘𝑊)‘((invg‘𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋})) |
46 | 39, 45 | eqeltrrd 2840 |
. . . . . 6
⊢ ((𝜑 ∧
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋})) |
47 | 33, 46 | mtand 812 |
. . . . 5
⊢ (𝜑 → ¬
((invg‘𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) |
48 | 5, 16, 17, 22, 18, 2, 29, 47 | lspexchn2 20308 |
. . . 4
⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg‘𝑊)‘𝑍)})) |
49 | 5, 7, 16 | lspsnneg 20183 |
. . . . . 6
⊢ ((𝑊 ∈ LMod ∧ 𝑍 ∈ 𝑉) → (𝑁‘{((invg‘𝑊)‘𝑍)}) = (𝑁‘{𝑍})) |
50 | 20, 4, 49 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁‘{((invg‘𝑊)‘𝑍)}) = (𝑁‘{𝑍})) |
51 | 30, 50 | neeqtrrd 3017 |
. . . 4
⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg‘𝑊)‘𝑍)})) |
52 | 5, 14, 7 | grpinvnzcl 18562 |
. . . . 5
⊢ ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) →
((invg‘𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 })) |
53 | 35, 3, 52 | syl2anc 583 |
. . . 4
⊢ (𝜑 →
((invg‘𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 })) |
54 | 5, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6 | baerlem5a 39655 |
. . 3
⊢ (𝜑 → (𝑁‘{(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))}) = (((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 −
((invg‘𝑊)‘𝑍))}) ⊕ (𝑁‘{𝑌})))) |
55 | 50 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → ((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑍)})) = ((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{𝑍}))) |
56 | 5, 6, 8, 7, 35, 18, 4 | grpsubinv 18563 |
. . . . . . 7
⊢ (𝜑 → (𝑋 −
((invg‘𝑊)‘𝑍)) = (𝑋 + 𝑍)) |
57 | 56 | sneqd 4570 |
. . . . . 6
⊢ (𝜑 → {(𝑋 −
((invg‘𝑊)‘𝑍))} = {(𝑋 + 𝑍)}) |
58 | 57 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → (𝑁‘{(𝑋 −
((invg‘𝑊)‘𝑍))}) = (𝑁‘{(𝑋 + 𝑍)})) |
59 | 58 | oveq1d 7270 |
. . . 4
⊢ (𝜑 → ((𝑁‘{(𝑋 −
((invg‘𝑊)‘𝑍))}) ⊕ (𝑁‘{𝑌})) = ((𝑁‘{(𝑋 + 𝑍)}) ⊕ (𝑁‘{𝑌}))) |
60 | 55, 59 | ineq12d 4144 |
. . 3
⊢ (𝜑 → (((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 −
((invg‘𝑊)‘𝑍))}) ⊕ (𝑁‘{𝑌}))) = (((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) ⊕ (𝑁‘{𝑌})))) |
61 | 13, 54, 60 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → (𝑁‘{(𝑋 − (𝑌 − 𝑍))}) = (((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) ⊕ (𝑁‘{𝑌})))) |
62 | 10 | sneqd 4570 |
. . . 4
⊢ (𝜑 → {(𝑌 − 𝑍)} = {(𝑌 +
((invg‘𝑊)‘𝑍))}) |
63 | 62 | fveq2d 6760 |
. . 3
⊢ (𝜑 → (𝑁‘{(𝑌 − 𝑍)}) = (𝑁‘{(𝑌 +
((invg‘𝑊)‘𝑍))})) |
64 | 5, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6 | baerlem5b 39656 |
. . 3
⊢ (𝜑 → (𝑁‘{(𝑌 +
((invg‘𝑊)‘𝑍))}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))}) ⊕ (𝑁‘{𝑋})))) |
65 | 50 | oveq2d 7271 |
. . . 4
⊢ (𝜑 → ((𝑁‘{𝑌}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑍)})) = ((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍}))) |
66 | 10 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → (𝑌 +
((invg‘𝑊)‘𝑍)) = (𝑌 − 𝑍)) |
67 | 66 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍))) = (𝑋 − (𝑌 − 𝑍))) |
68 | 67 | sneqd 4570 |
. . . . . 6
⊢ (𝜑 → {(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))} = {(𝑋 − (𝑌 − 𝑍))}) |
69 | 68 | fveq2d 6760 |
. . . . 5
⊢ (𝜑 → (𝑁‘{(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))}) = (𝑁‘{(𝑋 − (𝑌 − 𝑍))})) |
70 | 69 | oveq1d 7270 |
. . . 4
⊢ (𝜑 → ((𝑁‘{(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))}) ⊕ (𝑁‘{𝑋})) = ((𝑁‘{(𝑋 − (𝑌 − 𝑍))}) ⊕ (𝑁‘{𝑋}))) |
71 | 65, 70 | ineq12d 4144 |
. . 3
⊢ (𝜑 → (((𝑁‘{𝑌}) ⊕ (𝑁‘{((invg‘𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 − (𝑌 +
((invg‘𝑊)‘𝑍)))}) ⊕ (𝑁‘{𝑋}))) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 − 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
72 | 63, 64, 71 | 3eqtrd 2782 |
. 2
⊢ (𝜑 → (𝑁‘{(𝑌 − 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 − 𝑍))}) ⊕ (𝑁‘{𝑋})))) |
73 | 61, 72 | jca 511 |
1
⊢ (𝜑 → ((𝑁‘{(𝑋 − (𝑌 − 𝑍))}) = (((𝑁‘{(𝑋 − 𝑌)}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) ⊕ (𝑁‘{𝑌}))) ∧ (𝑁‘{(𝑌 − 𝑍)}) = (((𝑁‘{𝑌}) ⊕ (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 − (𝑌 − 𝑍))}) ⊕ (𝑁‘{𝑋}))))) |