Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5abmN Structured version   Visualization version   GIF version

Theorem baerlem5abmN 39659
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Subtraction versions of first and second equations of part (5) in [Baer] p. 46, conjoined to share commonality in their proofs. TODO: Delete if not needed. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5abmN (𝜑 → ((𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))) ∧ (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))))

Proof of Theorem baerlem5abmN
StepHypRef Expression
1 baerlem3.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21eldifad 3895 . . . . . . 7 (𝜑𝑌𝑉)
3 baerlem3.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
43eldifad 3895 . . . . . . 7 (𝜑𝑍𝑉)
5 baerlem3.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 baerlem5a.p . . . . . . . 8 + = (+g𝑊)
7 eqid 2738 . . . . . . . 8 (invg𝑊) = (invg𝑊)
8 baerlem3.m . . . . . . . 8 = (-g𝑊)
95, 6, 7, 8grpsubval 18540 . . . . . . 7 ((𝑌𝑉𝑍𝑉) → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
102, 4, 9syl2anc 583 . . . . . 6 (𝜑 → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
1110oveq2d 7271 . . . . 5 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 (𝑌 + ((invg𝑊)‘𝑍))))
1211sneqd 4570 . . . 4 (𝜑 → {(𝑋 (𝑌 𝑍))} = {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))})
1312fveq2d 6760 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}))
14 baerlem3.o . . . 4 0 = (0g𝑊)
15 baerlem3.s . . . 4 = (LSSum‘𝑊)
16 baerlem3.n . . . 4 𝑁 = (LSpan‘𝑊)
17 baerlem3.w . . . 4 (𝜑𝑊 ∈ LVec)
18 baerlem3.x . . . 4 (𝜑𝑋𝑉)
19 lveclmod 20283 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2017, 19syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
215, 7lmodvnegcl 20079 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((invg𝑊)‘𝑍) ∈ 𝑉)
2220, 4, 21syl2anc 583 . . . . 5 (𝜑 → ((invg𝑊)‘𝑍) ∈ 𝑉)
23 eqid 2738 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
245, 23, 16, 20, 2, 4lspprcl 20155 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
25 baerlem3.c . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2614, 23, 20, 24, 18, 25lssneln0 20129 . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
275, 16, 17, 18, 2, 4, 25lspindpi 20309 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simpld 494 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
295, 14, 16, 17, 26, 2, 28lspsnne1 20294 . . . . 5 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
30 baerlem3.d . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
3130necomd 2998 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))
325, 14, 16, 17, 3, 2, 31lspsnne1 20294 . . . . . . 7 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌}))
335, 16, 17, 18, 4, 2, 32, 25lspexchn2 20308 . . . . . 6 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
34 lmodgrp 20045 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
3517, 19, 343syl 18 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
3635adantr 480 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp)
374adantr 480 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍𝑉)
385, 7grpinvinv 18557 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑍𝑉) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3936, 37, 38syl2anc 583 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
4020adantr 480 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod)
415, 23, 16, 20, 2, 18lspprcl 20155 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
4241adantr 480 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
43 simpr 484 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
4423, 7lssvnegcl 20133 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4540, 42, 43, 44syl3anc 1369 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4639, 45eqeltrrd 2840 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
4733, 46mtand 812 . . . . 5 (𝜑 → ¬ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
485, 16, 17, 22, 18, 2, 29, 47lspexchn2 20308 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg𝑊)‘𝑍)}))
495, 7, 16lspsnneg 20183 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5020, 4, 49syl2anc 583 . . . . 5 (𝜑 → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5130, 50neeqtrrd 3017 . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg𝑊)‘𝑍)}))
525, 14, 7grpinvnzcl 18562 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
5335, 3, 52syl2anc 583 . . . 4 (𝜑 → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
545, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6baerlem5a 39655 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))))
5550oveq2d 7271 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
565, 6, 8, 7, 35, 18, 4grpsubinv 18563 . . . . . . 7 (𝜑 → (𝑋 ((invg𝑊)‘𝑍)) = (𝑋 + 𝑍))
5756sneqd 4570 . . . . . 6 (𝜑 → {(𝑋 ((invg𝑊)‘𝑍))} = {(𝑋 + 𝑍)})
5857fveq2d 6760 . . . . 5 (𝜑 → (𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) = (𝑁‘{(𝑋 + 𝑍)}))
5958oveq1d 7270 . . . 4 (𝜑 → ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌})) = ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌})))
6055, 59ineq12d 4144 . . 3 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
6113, 54, 603eqtrd 2782 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
6210sneqd 4570 . . . 4 (𝜑 → {(𝑌 𝑍)} = {(𝑌 + ((invg𝑊)‘𝑍))})
6362fveq2d 6760 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}))
645, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6baerlem5b 39656 . . 3 (𝜑 → (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}) = (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))))
6550oveq2d 7271 . . . 4 (𝜑 → ((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
6610eqcomd 2744 . . . . . . . 8 (𝜑 → (𝑌 + ((invg𝑊)‘𝑍)) = (𝑌 𝑍))
6766oveq2d 7271 . . . . . . 7 (𝜑 → (𝑋 (𝑌 + ((invg𝑊)‘𝑍))) = (𝑋 (𝑌 𝑍)))
6867sneqd 4570 . . . . . 6 (𝜑 → {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))} = {(𝑋 (𝑌 𝑍))})
6968fveq2d 6760 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (𝑁‘{(𝑋 (𝑌 𝑍))}))
7069oveq1d 7270 . . . 4 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋})) = ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))
7165, 70ineq12d 4144 . . 3 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
7263, 64, 713eqtrd 2782 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
7361, 72jca 511 1 (𝜑 → ((𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))) ∧ (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  cin 3882  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Grpcgrp 18492  invgcminusg 18493  -gcsg 18494  LSSumclsm 19154  LModclmod 20038  LSubSpclss 20108  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-cntz 18838  df-lsm 19156  df-cmn 19303  df-abl 19304  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator