Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  baerlem5abmN Structured version   Visualization version   GIF version

Theorem baerlem5abmN 38385
Description: An equality that holds when 𝑋, 𝑌, 𝑍 are independent (non-colinear) vectors. Subtraction versions of first and second equations of part (5) in [Baer] p. 46, conjoined to share commonality in their proofs. TODO: Delete if not needed. (Contributed by NM, 24-May-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
baerlem3.v 𝑉 = (Base‘𝑊)
baerlem3.m = (-g𝑊)
baerlem3.o 0 = (0g𝑊)
baerlem3.s = (LSSum‘𝑊)
baerlem3.n 𝑁 = (LSpan‘𝑊)
baerlem3.w (𝜑𝑊 ∈ LVec)
baerlem3.x (𝜑𝑋𝑉)
baerlem3.c (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
baerlem3.d (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
baerlem3.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
baerlem3.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
baerlem5a.p + = (+g𝑊)
Assertion
Ref Expression
baerlem5abmN (𝜑 → ((𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))) ∧ (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))))

Proof of Theorem baerlem5abmN
StepHypRef Expression
1 baerlem3.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21eldifad 3871 . . . . . . 7 (𝜑𝑌𝑉)
3 baerlem3.z . . . . . . . 8 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
43eldifad 3871 . . . . . . 7 (𝜑𝑍𝑉)
5 baerlem3.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 baerlem5a.p . . . . . . . 8 + = (+g𝑊)
7 eqid 2795 . . . . . . . 8 (invg𝑊) = (invg𝑊)
8 baerlem3.m . . . . . . . 8 = (-g𝑊)
95, 6, 7, 8grpsubval 17906 . . . . . . 7 ((𝑌𝑉𝑍𝑉) → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
102, 4, 9syl2anc 584 . . . . . 6 (𝜑 → (𝑌 𝑍) = (𝑌 + ((invg𝑊)‘𝑍)))
1110oveq2d 7032 . . . . 5 (𝜑 → (𝑋 (𝑌 𝑍)) = (𝑋 (𝑌 + ((invg𝑊)‘𝑍))))
1211sneqd 4484 . . . 4 (𝜑 → {(𝑋 (𝑌 𝑍))} = {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))})
1312fveq2d 6542 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}))
14 baerlem3.o . . . 4 0 = (0g𝑊)
15 baerlem3.s . . . 4 = (LSSum‘𝑊)
16 baerlem3.n . . . 4 𝑁 = (LSpan‘𝑊)
17 baerlem3.w . . . 4 (𝜑𝑊 ∈ LVec)
18 baerlem3.x . . . 4 (𝜑𝑋𝑉)
19 lveclmod 19568 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
2017, 19syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
215, 7lmodvnegcl 19365 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → ((invg𝑊)‘𝑍) ∈ 𝑉)
2220, 4, 21syl2anc 584 . . . . 5 (𝜑 → ((invg𝑊)‘𝑍) ∈ 𝑉)
23 eqid 2795 . . . . . . 7 (LSubSp‘𝑊) = (LSubSp‘𝑊)
245, 23, 16, 20, 2, 4lspprcl 19440 . . . . . . 7 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑊))
25 baerlem3.c . . . . . . 7 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
2614, 23, 20, 24, 18, 25lssneln0 19414 . . . . . 6 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
275, 16, 17, 18, 2, 4, 25lspindpi 19594 . . . . . . 7 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})))
2827simpld 495 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
295, 14, 16, 17, 26, 2, 28lspsnne1 19579 . . . . 5 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌}))
30 baerlem3.d . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
3130necomd 3039 . . . . . . . 8 (𝜑 → (𝑁‘{𝑍}) ≠ (𝑁‘{𝑌}))
325, 14, 16, 17, 3, 2, 31lspsnne1 19579 . . . . . . 7 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌}))
335, 16, 17, 18, 4, 2, 32, 25lspexchn2 19593 . . . . . 6 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
34 lmodgrp 19331 . . . . . . . . . 10 (𝑊 ∈ LMod → 𝑊 ∈ Grp)
3517, 19, 343syl 18 . . . . . . . . 9 (𝜑𝑊 ∈ Grp)
3635adantr 481 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ Grp)
374adantr 481 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍𝑉)
385, 7grpinvinv 17923 . . . . . . . 8 ((𝑊 ∈ Grp ∧ 𝑍𝑉) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
3936, 37, 38syl2anc 584 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) = 𝑍)
4020adantr 481 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑊 ∈ LMod)
415, 23, 16, 20, 2, 18lspprcl 19440 . . . . . . . . 9 (𝜑 → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
4241adantr 481 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊))
43 simpr 485 . . . . . . . 8 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
4423, 7lssvnegcl 19418 . . . . . . . 8 ((𝑊 ∈ LMod ∧ (𝑁‘{𝑌, 𝑋}) ∈ (LSubSp‘𝑊) ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4540, 42, 43, 44syl3anc 1364 . . . . . . 7 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → ((invg𝑊)‘((invg𝑊)‘𝑍)) ∈ (𝑁‘{𝑌, 𝑋}))
4639, 45eqeltrrd 2884 . . . . . 6 ((𝜑 ∧ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋})) → 𝑍 ∈ (𝑁‘{𝑌, 𝑋}))
4733, 46mtand 812 . . . . 5 (𝜑 → ¬ ((invg𝑊)‘𝑍) ∈ (𝑁‘{𝑌, 𝑋}))
485, 16, 17, 22, 18, 2, 29, 47lspexchn2 19593 . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, ((invg𝑊)‘𝑍)}))
495, 7, 16lspsnneg 19468 . . . . . 6 ((𝑊 ∈ LMod ∧ 𝑍𝑉) → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5020, 4, 49syl2anc 584 . . . . 5 (𝜑 → (𝑁‘{((invg𝑊)‘𝑍)}) = (𝑁‘{𝑍}))
5130, 50neeqtrrd 3058 . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{((invg𝑊)‘𝑍)}))
525, 14, 7grpinvnzcl 17928 . . . . 5 ((𝑊 ∈ Grp ∧ 𝑍 ∈ (𝑉 ∖ { 0 })) → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
5335, 3, 52syl2anc 584 . . . 4 (𝜑 → ((invg𝑊)‘𝑍) ∈ (𝑉 ∖ { 0 }))
545, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6baerlem5a 38381 . . 3 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))))
5550oveq2d 7032 . . . 4 (𝜑 → ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})))
565, 6, 8, 7, 35, 18, 4grpsubinv 17929 . . . . . . 7 (𝜑 → (𝑋 ((invg𝑊)‘𝑍)) = (𝑋 + 𝑍))
5756sneqd 4484 . . . . . 6 (𝜑 → {(𝑋 ((invg𝑊)‘𝑍))} = {(𝑋 + 𝑍)})
5857fveq2d 6542 . . . . 5 (𝜑 → (𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) = (𝑁‘{(𝑋 + 𝑍)}))
5958oveq1d 7031 . . . 4 (𝜑 → ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌})) = ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌})))
6055, 59ineq12d 4110 . . 3 (𝜑 → (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 ((invg𝑊)‘𝑍))}) (𝑁‘{𝑌}))) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
6113, 54, 603eqtrd 2835 . 2 (𝜑 → (𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))))
6210sneqd 4484 . . . 4 (𝜑 → {(𝑌 𝑍)} = {(𝑌 + ((invg𝑊)‘𝑍))})
6362fveq2d 6542 . . 3 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}))
645, 8, 14, 15, 16, 17, 18, 48, 51, 1, 53, 6baerlem5b 38382 . . 3 (𝜑 → (𝑁‘{(𝑌 + ((invg𝑊)‘𝑍))}) = (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))))
6550oveq2d 7032 . . . 4 (𝜑 → ((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) = ((𝑁‘{𝑌}) (𝑁‘{𝑍})))
6610eqcomd 2801 . . . . . . . 8 (𝜑 → (𝑌 + ((invg𝑊)‘𝑍)) = (𝑌 𝑍))
6766oveq2d 7032 . . . . . . 7 (𝜑 → (𝑋 (𝑌 + ((invg𝑊)‘𝑍))) = (𝑋 (𝑌 𝑍)))
6867sneqd 4484 . . . . . 6 (𝜑 → {(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))} = {(𝑋 (𝑌 𝑍))})
6968fveq2d 6542 . . . . 5 (𝜑 → (𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) = (𝑁‘{(𝑋 (𝑌 𝑍))}))
7069oveq1d 7031 . . . 4 (𝜑 → ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋})) = ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))
7165, 70ineq12d 4110 . . 3 (𝜑 → (((𝑁‘{𝑌}) (𝑁‘{((invg𝑊)‘𝑍)})) ∩ ((𝑁‘{(𝑋 (𝑌 + ((invg𝑊)‘𝑍)))}) (𝑁‘{𝑋}))) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
7263, 64, 713eqtrd 2835 . 2 (𝜑 → (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋}))))
7361, 72jca 512 1 (𝜑 → ((𝑁‘{(𝑋 (𝑌 𝑍))}) = (((𝑁‘{(𝑋 𝑌)}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 + 𝑍)}) (𝑁‘{𝑌}))) ∧ (𝑁‘{(𝑌 𝑍)}) = (((𝑁‘{𝑌}) (𝑁‘{𝑍})) ∩ ((𝑁‘{(𝑋 (𝑌 𝑍))}) (𝑁‘{𝑋})))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1522  wcel 2081  wne 2984  cdif 3856  cin 3858  {csn 4472  {cpr 4474  cfv 6225  (class class class)co 7016  Basecbs 16312  +gcplusg 16394  0gc0g 16542  Grpcgrp 17861  invgcminusg 17862  -gcsg 17863  LSSumclsm 18489  LModclmod 19324  LSubSpclss 19393  LSpanclspn 19433  LVecclvec 19564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-tpos 7743  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-ndx 16315  df-slot 16316  df-base 16318  df-sets 16319  df-ress 16320  df-plusg 16407  df-mulr 16408  df-0g 16544  df-mgm 17681  df-sgrp 17723  df-mnd 17734  df-submnd 17775  df-grp 17864  df-minusg 17865  df-sbg 17866  df-subg 18030  df-cntz 18188  df-lsm 18491  df-cmn 18635  df-abl 18636  df-mgp 18930  df-ur 18942  df-ring 18989  df-oppr 19063  df-dvdsr 19081  df-unit 19082  df-invr 19112  df-drng 19194  df-lmod 19326  df-lss 19394  df-lsp 19434  df-lvec 19565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator