Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplactf1o Structured version   Visualization version   GIF version

Theorem grplactf1o 18270
 Description: The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.)
Hypotheses
Ref Expression
grplact.1 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
grplact.2 𝑋 = (Base‘𝐺)
grplact.3 + = (+g𝐺)
Assertion
Ref Expression
grplactf1o ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴):𝑋1-1-onto𝑋)
Distinct variable groups:   𝑔,𝑎,𝐴   𝐺,𝑎,𝑔   + ,𝑎,𝑔   𝑋,𝑎,𝑔
Allowed substitution hints:   𝐹(𝑔,𝑎)

Proof of Theorem grplactf1o
StepHypRef Expression
1 grplact.1 . . 3 𝐹 = (𝑔𝑋 ↦ (𝑎𝑋 ↦ (𝑔 + 𝑎)))
2 grplact.2 . . 3 𝑋 = (Base‘𝐺)
3 grplact.3 . . 3 + = (+g𝐺)
4 eqid 2758 . . 3 (invg𝐺) = (invg𝐺)
51, 2, 3, 4grplactcnv 18269 . 2 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝐹𝐴):𝑋1-1-onto𝑋(𝐹𝐴) = (𝐹‘((invg𝐺)‘𝐴))))
65simpld 498 1 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → (𝐹𝐴):𝑋1-1-onto𝑋)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ↦ cmpt 5112  ◡ccnv 5523  –1-1-onto→wf1o 6334  ‘cfv 6335  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  Grpcgrp 18169  invgcminusg 18170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173 This theorem is referenced by:  eqgen  18400  dchrsum2  25951  sumdchr2  25953
 Copyright terms: Public domain W3C validator