| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplactf1o | Structured version Visualization version GIF version | ||
| Description: The left group action of element 𝐴 of group 𝐺 maps the underlying set 𝑋 of 𝐺 one-to-one onto itself. (Contributed by Paul Chapman, 18-Mar-2008.) (Proof shortened by Mario Carneiro, 14-Aug-2015.) |
| Ref | Expression |
|---|---|
| grplact.1 | ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) |
| grplact.2 | ⊢ 𝑋 = (Base‘𝐺) |
| grplact.3 | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| grplactf1o | ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴):𝑋–1-1-onto→𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grplact.1 | . . 3 ⊢ 𝐹 = (𝑔 ∈ 𝑋 ↦ (𝑎 ∈ 𝑋 ↦ (𝑔 + 𝑎))) | |
| 2 | grplact.2 | . . 3 ⊢ 𝑋 = (Base‘𝐺) | |
| 3 | grplact.3 | . . 3 ⊢ + = (+g‘𝐺) | |
| 4 | eqid 2734 | . . 3 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 5 | 1, 2, 3, 4 | grplactcnv 19035 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝐹‘𝐴):𝑋–1-1-onto→𝑋 ∧ ◡(𝐹‘𝐴) = (𝐹‘((invg‘𝐺)‘𝐴)))) |
| 6 | 5 | simpld 494 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹‘𝐴):𝑋–1-1-onto→𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ↦ cmpt 5207 ◡ccnv 5666 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 +gcplusg 17277 Grpcgrp 18925 invgcminusg 18926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-grp 18928 df-minusg 18929 |
| This theorem is referenced by: eqgen 19173 dchrsum2 27267 sumdchr2 27269 |
| Copyright terms: Public domain | W3C validator |