![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumval1 | Structured version Visualization version GIF version |
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval1.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval1.z | ⊢ 0 = (0g‘𝐺) |
gsumval1.p | ⊢ + = (+g‘𝐺) |
gsumval1.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
gsumval1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
gsumval1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
Ref | Expression |
---|---|
gsumval1 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval1.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval1.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval1.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumval1.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | eqidd 2728 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ 𝑂)) = (◡𝐹 “ (V ∖ 𝑂))) | |
6 | gsumval1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | gsumval1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | gsumval1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) | |
9 | 4 | ssrab3 4078 | . . . 4 ⊢ 𝑂 ⊆ 𝐵 |
10 | fss 6742 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑂 ∧ 𝑂 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) | |
11 | 8, 9, 10 | sylancl 584 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
12 | 1, 2, 3, 4, 5, 6, 7, 11 | gsumval 18642 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂))))))))) |
13 | frn 6732 | . . 3 ⊢ (𝐹:𝐴⟶𝑂 → ran 𝐹 ⊆ 𝑂) | |
14 | iftrue 4536 | . . 3 ⊢ (ran 𝐹 ⊆ 𝑂 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) | |
15 | 8, 13, 14 | 3syl 18 | . 2 ⊢ (𝜑 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) |
16 | 12, 15 | eqtrd 2767 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 ∀wral 3057 ∃wrex 3066 {crab 3428 Vcvv 3471 ∖ cdif 3944 ⊆ wss 3947 ifcif 4530 ◡ccnv 5679 ran crn 5681 “ cima 5683 ∘ ccom 5684 ℩cio 6501 ⟶wf 6547 –1-1-onto→wf1o 6550 ‘cfv 6551 (class class class)co 7424 1c1 11145 ℤ≥cuz 12858 ...cfz 13522 seqcseq 14004 ♯chash 14327 Basecbs 17185 +gcplusg 17238 0gc0g 17426 Σg cgsu 17427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-ov 7427 df-oprab 7428 df-mpo 7429 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-seq 14005 df-gsum 17429 |
This theorem is referenced by: gsum0 18649 gsumval2 18651 gsumz 18793 |
Copyright terms: Public domain | W3C validator |