MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval1 Structured version   Visualization version   GIF version

Theorem gsumval1 18010
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval1.b 𝐵 = (Base‘𝐺)
gsumval1.z 0 = (0g𝐺)
gsumval1.p + = (+g𝐺)
gsumval1.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
gsumval1.g (𝜑𝐺𝑉)
gsumval1.a (𝜑𝐴𝑊)
gsumval1.f (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
gsumval1 (𝜑 → (𝐺 Σg 𝐹) = 0 )
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥, + ,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumval1
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval1.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval1.z . . 3 0 = (0g𝐺)
3 gsumval1.p . . 3 + = (+g𝐺)
4 gsumval1.o . . 3 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 eqidd 2739 . . 3 (𝜑 → (𝐹 “ (V ∖ 𝑂)) = (𝐹 “ (V ∖ 𝑂)))
6 gsumval1.g . . 3 (𝜑𝐺𝑉)
7 gsumval1.a . . 3 (𝜑𝐴𝑊)
8 gsumval1.f . . . 4 (𝜑𝐹:𝐴𝑂)
94ssrab3 3972 . . . 4 𝑂𝐵
10 fss 6522 . . . 4 ((𝐹:𝐴𝑂𝑂𝐵) → 𝐹:𝐴𝐵)
118, 9, 10sylancl 589 . . 3 (𝜑𝐹:𝐴𝐵)
121, 2, 3, 4, 5, 6, 7, 11gsumval 18004 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))))
13 frn 6512 . . 3 (𝐹:𝐴𝑂 → ran 𝐹𝑂)
14 iftrue 4421 . . 3 (ran 𝐹𝑂 → if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = 0 )
158, 13, 143syl 18 . 2 (𝜑 → if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = 0 )
1612, 15eqtrd 2773 1 (𝜑 → (𝐺 Σg 𝐹) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1542  wex 1786  wcel 2113  wral 3053  wrex 3054  {crab 3057  Vcvv 3398  cdif 3841  wss 3844  ifcif 4415  ccnv 5525  ran crn 5527  cima 5529  ccom 5530  cio 6296  wf 6336  1-1-ontowf1o 6339  cfv 6340  (class class class)co 7171  1c1 10617  cuz 12325  ...cfz 12982  seqcseq 13461  chash 13783  Basecbs 16587  +gcplusg 16669  0gc0g 16817   Σg cgsu 16818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710  ax-sep 5168  ax-nul 5175  ax-pow 5233  ax-pr 5297  ax-un 7480
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2074  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-rab 3062  df-v 3400  df-sbc 3683  df-csb 3792  df-dif 3847  df-un 3849  df-in 3851  df-ss 3861  df-nul 4213  df-if 4416  df-pw 4491  df-sn 4518  df-pr 4520  df-op 4524  df-uni 4798  df-br 5032  df-opab 5094  df-mpt 5112  df-id 5430  df-xp 5532  df-rel 5533  df-cnv 5534  df-co 5535  df-dm 5536  df-rn 5537  df-res 5538  df-ima 5539  df-pred 6130  df-iota 6298  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7174  df-oprab 7175  df-mpo 7176  df-wrecs 7977  df-recs 8038  df-rdg 8076  df-seq 13462  df-gsum 16820
This theorem is referenced by:  gsum0  18011  gsumval2  18013  gsumz  18117
  Copyright terms: Public domain W3C validator