![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumval1 | Structured version Visualization version GIF version |
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval1.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval1.z | ⊢ 0 = (0g‘𝐺) |
gsumval1.p | ⊢ + = (+g‘𝐺) |
gsumval1.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
gsumval1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
gsumval1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
Ref | Expression |
---|---|
gsumval1 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval1.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval1.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval1.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumval1.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | eqidd 2732 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ 𝑂)) = (◡𝐹 “ (V ∖ 𝑂))) | |
6 | gsumval1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | gsumval1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | gsumval1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) | |
9 | 4 | ssrab3 4081 | . . . 4 ⊢ 𝑂 ⊆ 𝐵 |
10 | fss 6735 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑂 ∧ 𝑂 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) | |
11 | 8, 9, 10 | sylancl 585 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
12 | 1, 2, 3, 4, 5, 6, 7, 11 | gsumval 18603 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂))))))))) |
13 | frn 6725 | . . 3 ⊢ (𝐹:𝐴⟶𝑂 → ran 𝐹 ⊆ 𝑂) | |
14 | iftrue 4535 | . . 3 ⊢ (ran 𝐹 ⊆ 𝑂 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) | |
15 | 8, 13, 14 | 3syl 18 | . 2 ⊢ (𝜑 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) |
16 | 12, 15 | eqtrd 2771 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∀wral 3060 ∃wrex 3069 {crab 3431 Vcvv 3473 ∖ cdif 3946 ⊆ wss 3949 ifcif 4529 ◡ccnv 5676 ran crn 5678 “ cima 5680 ∘ ccom 5681 ℩cio 6494 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7412 1c1 11114 ℤ≥cuz 12827 ...cfz 13489 seqcseq 13971 ♯chash 14295 Basecbs 17149 +gcplusg 17202 0gc0g 17390 Σg cgsu 17391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7415 df-oprab 7416 df-mpo 7417 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-seq 13972 df-gsum 17393 |
This theorem is referenced by: gsum0 18610 gsumval2 18612 gsumz 18754 |
Copyright terms: Public domain | W3C validator |