MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval1 Structured version   Visualization version   GIF version

Theorem gsumval1 18610
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval1.b 𝐵 = (Base‘𝐺)
gsumval1.z 0 = (0g𝐺)
gsumval1.p + = (+g𝐺)
gsumval1.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
gsumval1.g (𝜑𝐺𝑉)
gsumval1.a (𝜑𝐴𝑊)
gsumval1.f (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
gsumval1 (𝜑 → (𝐺 Σg 𝐹) = 0 )
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥, + ,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumval1
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval1.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval1.z . . 3 0 = (0g𝐺)
3 gsumval1.p . . 3 + = (+g𝐺)
4 gsumval1.o . . 3 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 eqidd 2730 . . 3 (𝜑 → (𝐹 “ (V ∖ 𝑂)) = (𝐹 “ (V ∖ 𝑂)))
6 gsumval1.g . . 3 (𝜑𝐺𝑉)
7 gsumval1.a . . 3 (𝜑𝐴𝑊)
8 gsumval1.f . . . 4 (𝜑𝐹:𝐴𝑂)
94ssrab3 4045 . . . 4 𝑂𝐵
10 fss 6704 . . . 4 ((𝐹:𝐴𝑂𝑂𝐵) → 𝐹:𝐴𝐵)
118, 9, 10sylancl 586 . . 3 (𝜑𝐹:𝐴𝐵)
121, 2, 3, 4, 5, 6, 7, 11gsumval 18604 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))))
13 frn 6695 . . 3 (𝐹:𝐴𝑂 → ran 𝐹𝑂)
14 iftrue 4494 . . 3 (ran 𝐹𝑂 → if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = 0 )
158, 13, 143syl 18 . 2 (𝜑 → if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = 0 )
1612, 15eqtrd 2764 1 (𝜑 → (𝐺 Σg 𝐹) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  wss 3914  ifcif 4488  ccnv 5637  ran crn 5639  cima 5641  ccom 5642  cio 6462  wf 6507  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  1c1 11069  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  Basecbs 17179  +gcplusg 17220  0gc0g 17402   Σg cgsu 17403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-seq 13967  df-gsum 17405
This theorem is referenced by:  gsum0  18611  gsumval2  18613  gsumz  18763
  Copyright terms: Public domain W3C validator