MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval1 Structured version   Visualization version   GIF version

Theorem gsumval1 18697
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval1.b 𝐵 = (Base‘𝐺)
gsumval1.z 0 = (0g𝐺)
gsumval1.p + = (+g𝐺)
gsumval1.o 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
gsumval1.g (𝜑𝐺𝑉)
gsumval1.a (𝜑𝐴𝑊)
gsumval1.f (𝜑𝐹:𝐴𝑂)
Assertion
Ref Expression
gsumval1 (𝜑 → (𝐺 Σg 𝐹) = 0 )
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥, + ,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐺(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)   0 (𝑥,𝑦)

Proof of Theorem gsumval1
Dummy variables 𝑓 𝑚 𝑛 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumval1.b . . 3 𝐵 = (Base‘𝐺)
2 gsumval1.z . . 3 0 = (0g𝐺)
3 gsumval1.p . . 3 + = (+g𝐺)
4 gsumval1.o . . 3 𝑂 = {𝑥𝐵 ∣ ∀𝑦𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)}
5 eqidd 2737 . . 3 (𝜑 → (𝐹 “ (V ∖ 𝑂)) = (𝐹 “ (V ∖ 𝑂)))
6 gsumval1.g . . 3 (𝜑𝐺𝑉)
7 gsumval1.a . . 3 (𝜑𝐴𝑊)
8 gsumval1.f . . . 4 (𝜑𝐹:𝐴𝑂)
94ssrab3 4081 . . . 4 𝑂𝐵
10 fss 6751 . . . 4 ((𝐹:𝐴𝑂𝑂𝐵) → 𝐹:𝐴𝐵)
118, 9, 10sylancl 586 . . 3 (𝜑𝐹:𝐴𝐵)
121, 2, 3, 4, 5, 6, 7, 11gsumval 18691 . 2 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))))
13 frn 6742 . . 3 (𝐹:𝐴𝑂 → ran 𝐹𝑂)
14 iftrue 4530 . . 3 (ran 𝐹𝑂 → if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = 0 )
158, 13, 143syl 18 . 2 (𝜑 → if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧𝑓(𝑓:(1...(♯‘(𝐹 “ (V ∖ 𝑂))))–1-1-onto→(𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ 𝑂)))))))) = 0 )
1612, 15eqtrd 2776 1 (𝜑 → (𝐺 Σg 𝐹) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  wral 3060  wrex 3069  {crab 3435  Vcvv 3479  cdif 3947  wss 3950  ifcif 4524  ccnv 5683  ran crn 5685  cima 5687  ccom 5688  cio 6511  wf 6556  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  1c1 11157  cuz 12879  ...cfz 13548  seqcseq 14043  chash 14370  Basecbs 17248  +gcplusg 17298  0gc0g 17485   Σg cgsu 17486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-seq 14044  df-gsum 17488
This theorem is referenced by:  gsum0  18698  gsumval2  18700  gsumz  18850
  Copyright terms: Public domain W3C validator