![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumval1 | Structured version Visualization version GIF version |
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval1.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval1.z | ⊢ 0 = (0g‘𝐺) |
gsumval1.p | ⊢ + = (+g‘𝐺) |
gsumval1.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
gsumval1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
gsumval1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
Ref | Expression |
---|---|
gsumval1 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval1.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval1.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval1.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumval1.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | eqidd 2741 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ 𝑂)) = (◡𝐹 “ (V ∖ 𝑂))) | |
6 | gsumval1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | gsumval1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | gsumval1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) | |
9 | 4 | ssrab3 4105 | . . . 4 ⊢ 𝑂 ⊆ 𝐵 |
10 | fss 6763 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑂 ∧ 𝑂 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) | |
11 | 8, 9, 10 | sylancl 585 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
12 | 1, 2, 3, 4, 5, 6, 7, 11 | gsumval 18715 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂))))))))) |
13 | frn 6754 | . . 3 ⊢ (𝐹:𝐴⟶𝑂 → ran 𝐹 ⊆ 𝑂) | |
14 | iftrue 4554 | . . 3 ⊢ (ran 𝐹 ⊆ 𝑂 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) | |
15 | 8, 13, 14 | 3syl 18 | . 2 ⊢ (𝜑 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) |
16 | 12, 15 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ifcif 4548 ◡ccnv 5699 ran crn 5701 “ cima 5703 ∘ ccom 5704 ℩cio 6523 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 1c1 11185 ℤ≥cuz 12903 ...cfz 13567 seqcseq 14052 ♯chash 14379 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Σg cgsu 17500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-seq 14053 df-gsum 17502 |
This theorem is referenced by: gsum0 18722 gsumval2 18724 gsumz 18871 |
Copyright terms: Public domain | W3C validator |