![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumval1 | Structured version Visualization version GIF version |
Description: Value of the group sum operation when every element being summed is an identity of 𝐺. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval1.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval1.z | ⊢ 0 = (0g‘𝐺) |
gsumval1.p | ⊢ + = (+g‘𝐺) |
gsumval1.o | ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} |
gsumval1.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval1.a | ⊢ (𝜑 → 𝐴 ∈ 𝑊) |
gsumval1.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) |
Ref | Expression |
---|---|
gsumval1 | ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval1.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval1.z | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval1.p | . . 3 ⊢ + = (+g‘𝐺) | |
4 | gsumval1.o | . . 3 ⊢ 𝑂 = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 𝑦 ∧ (𝑦 + 𝑥) = 𝑦)} | |
5 | eqidd 2731 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (V ∖ 𝑂)) = (◡𝐹 “ (V ∖ 𝑂))) | |
6 | gsumval1.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | gsumval1.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑊) | |
8 | gsumval1.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑂) | |
9 | 4 | ssrab3 4079 | . . . 4 ⊢ 𝑂 ⊆ 𝐵 |
10 | fss 6733 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑂 ∧ 𝑂 ⊆ 𝐵) → 𝐹:𝐴⟶𝐵) | |
11 | 8, 9, 10 | sylancl 584 | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
12 | 1, 2, 3, 4, 5, 6, 7, 11 | gsumval 18602 | . 2 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂))))))))) |
13 | frn 6723 | . . 3 ⊢ (𝐹:𝐴⟶𝑂 → ran 𝐹 ⊆ 𝑂) | |
14 | iftrue 4533 | . . 3 ⊢ (ran 𝐹 ⊆ 𝑂 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) | |
15 | 8, 13, 14 | 3syl 18 | . 2 ⊢ (𝜑 → if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑧∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑧 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑧∃𝑓(𝑓:(1...(♯‘(◡𝐹 “ (V ∖ 𝑂))))–1-1-onto→(◡𝐹 “ (V ∖ 𝑂)) ∧ 𝑧 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ 𝑂)))))))) = 0 ) |
16 | 12, 15 | eqtrd 2770 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 ∀wral 3059 ∃wrex 3068 {crab 3430 Vcvv 3472 ∖ cdif 3944 ⊆ wss 3947 ifcif 4527 ◡ccnv 5674 ran crn 5676 “ cima 5678 ∘ ccom 5679 ℩cio 6492 ⟶wf 6538 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7411 1c1 11113 ℤ≥cuz 12826 ...cfz 13488 seqcseq 13970 ♯chash 14294 Basecbs 17148 +gcplusg 17201 0gc0g 17389 Σg cgsu 17390 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-ov 7414 df-oprab 7415 df-mpo 7416 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-seq 13971 df-gsum 17392 |
This theorem is referenced by: gsum0 18609 gsumval2 18611 gsumz 18753 |
Copyright terms: Public domain | W3C validator |