| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumval | Structured version Visualization version GIF version | ||
| Description: Expand out the substitutions in df-gsum 17405. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumval.z | ⊢ 0 = (0g‘𝐺) |
| gsumval.p | ⊢ + = (+g‘𝐺) |
| gsumval.o | ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} |
| gsumval.w | ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) |
| gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | gsumval.o | . 2 ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} | |
| 5 | gsumval.w | . 2 ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) | |
| 6 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 7 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 8 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | 1 | fvexi 6872 | . . . 4 ⊢ 𝐵 ∈ V |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 11 | fex2 7912 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 13 | 7 | fdmd 6698 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 14 | 1, 2, 3, 4, 5, 6, 12, 13 | gsumvalx 18603 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3405 Vcvv 3447 ∖ cdif 3911 ⊆ wss 3914 ifcif 4488 ◡ccnv 5637 ran crn 5639 “ cima 5641 ∘ ccom 5642 ℩cio 6462 ⟶wf 6507 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 1c1 11069 ℤ≥cuz 12793 ...cfz 13468 seqcseq 13966 ♯chash 14295 Basecbs 17179 +gcplusg 17220 0gc0g 17402 Σg cgsu 17403 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-seq 13967 df-gsum 17405 |
| This theorem is referenced by: gsumress 18609 gsumval1 18610 gsumval2a 18612 gsumval3a 19833 |
| Copyright terms: Public domain | W3C validator |