| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumval | Structured version Visualization version GIF version | ||
| Description: Expand out the substitutions in df-gsum 17461. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumval.z | ⊢ 0 = (0g‘𝐺) |
| gsumval.p | ⊢ + = (+g‘𝐺) |
| gsumval.o | ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} |
| gsumval.w | ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) |
| gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | gsumval.o | . 2 ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} | |
| 5 | gsumval.w | . 2 ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) | |
| 6 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 7 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 8 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | 1 | fvexi 6895 | . . . 4 ⊢ 𝐵 ∈ V |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 11 | fex2 7937 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 13 | 7 | fdmd 6721 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 14 | 1, 2, 3, 4, 5, 6, 12, 13 | gsumvalx 18659 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 {crab 3420 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 ifcif 4505 ◡ccnv 5658 ran crn 5660 “ cima 5662 ∘ ccom 5663 ℩cio 6487 ⟶wf 6532 –1-1-onto→wf1o 6535 ‘cfv 6536 (class class class)co 7410 1c1 11135 ℤ≥cuz 12857 ...cfz 13529 seqcseq 14024 ♯chash 14353 Basecbs 17233 +gcplusg 17276 0gc0g 17458 Σg cgsu 17459 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-seq 14025 df-gsum 17461 |
| This theorem is referenced by: gsumress 18665 gsumval1 18666 gsumval2a 18668 gsumval3a 19889 |
| Copyright terms: Public domain | W3C validator |