![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumval | Structured version Visualization version GIF version |
Description: Expand out the substitutions in df-gsum 17388. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval.z | ⊢ 0 = (0g‘𝐺) |
gsumval.p | ⊢ + = (+g‘𝐺) |
gsumval.o | ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} |
gsumval.w | ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) |
gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
gsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | gsumval.o | . 2 ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} | |
5 | gsumval.w | . 2 ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) | |
6 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
9 | 1 | fvexi 6906 | . . . 4 ⊢ 𝐵 ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | fex2 7924 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
12 | 7, 8, 10, 11 | syl3anc 1372 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
13 | 7 | fdmd 6729 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
14 | 1, 2, 3, 4, 5, 6, 12, 13 | gsumvalx 18595 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 {crab 3433 Vcvv 3475 ∖ cdif 3946 ⊆ wss 3949 ifcif 4529 ◡ccnv 5676 ran crn 5678 “ cima 5680 ∘ ccom 5681 ℩cio 6494 ⟶wf 6540 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 1c1 11111 ℤ≥cuz 12822 ...cfz 13484 seqcseq 13966 ♯chash 14290 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Σg cgsu 17386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-seq 13967 df-gsum 17388 |
This theorem is referenced by: gsumress 18601 gsumval1 18602 gsumval2a 18604 gsumval3a 19771 |
Copyright terms: Public domain | W3C validator |