Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > gsumval | Structured version Visualization version GIF version |
Description: Expand out the substitutions in df-gsum 17227. (Contributed by Mario Carneiro, 7-Dec-2014.) |
Ref | Expression |
---|---|
gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumval.z | ⊢ 0 = (0g‘𝐺) |
gsumval.p | ⊢ + = (+g‘𝐺) |
gsumval.o | ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} |
gsumval.w | ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) |
gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
Ref | Expression |
---|---|
gsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
4 | gsumval.o | . 2 ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} | |
5 | gsumval.w | . 2 ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) | |
6 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
7 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
8 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
9 | 1 | fvexi 6825 | . . . 4 ⊢ 𝐵 ∈ V |
10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
11 | fex2 7826 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
12 | 7, 8, 10, 11 | syl3anc 1370 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
13 | 7 | fdmd 6648 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
14 | 1, 2, 3, 4, 5, 6, 12, 13 | gsumvalx 18434 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 {crab 3403 Vcvv 3440 ∖ cdif 3893 ⊆ wss 3896 ifcif 4470 ◡ccnv 5606 ran crn 5608 “ cima 5610 ∘ ccom 5611 ℩cio 6415 ⟶wf 6461 –1-1-onto→wf1o 6464 ‘cfv 6465 (class class class)co 7316 1c1 10951 ℤ≥cuz 12661 ...cfz 13318 seqcseq 13800 ♯chash 14123 Basecbs 16986 +gcplusg 17036 0gc0g 17224 Σg cgsu 17225 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-br 5087 df-opab 5149 df-mpt 5170 df-id 5506 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-seq 13801 df-gsum 17227 |
This theorem is referenced by: gsumress 18440 gsumval1 18441 gsumval2a 18443 gsumval3a 19576 |
Copyright terms: Public domain | W3C validator |