| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumval | Structured version Visualization version GIF version | ||
| Description: Expand out the substitutions in df-gsum 17350. (Contributed by Mario Carneiro, 7-Dec-2014.) |
| Ref | Expression |
|---|---|
| gsumval.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumval.z | ⊢ 0 = (0g‘𝐺) |
| gsumval.p | ⊢ + = (+g‘𝐺) |
| gsumval.o | ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} |
| gsumval.w | ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) |
| gsumval.g | ⊢ (𝜑 → 𝐺 ∈ 𝑉) |
| gsumval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| gsumval.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| Ref | Expression |
|---|---|
| gsumval | ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval.b | . 2 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumval.z | . 2 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumval.p | . 2 ⊢ + = (+g‘𝐺) | |
| 4 | gsumval.o | . 2 ⊢ 𝑂 = {𝑠 ∈ 𝐵 ∣ ∀𝑡 ∈ 𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)} | |
| 5 | gsumval.w | . 2 ⊢ (𝜑 → 𝑊 = (◡𝐹 “ (V ∖ 𝑂))) | |
| 6 | gsumval.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑉) | |
| 7 | gsumval.f | . . 3 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 8 | gsumval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 9 | 1 | fvexi 6844 | . . . 4 ⊢ 𝐵 ∈ V |
| 10 | 9 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) |
| 11 | fex2 7874 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ V) → 𝐹 ∈ V) | |
| 12 | 7, 8, 10, 11 | syl3anc 1373 | . 2 ⊢ (𝜑 → 𝐹 ∈ V) |
| 13 | 7 | fdmd 6668 | . 2 ⊢ (𝜑 → dom 𝐹 = 𝐴) |
| 14 | 1, 2, 3, 4, 5, 6, 12, 13 | gsumvalx 18588 | 1 ⊢ (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹 ⊆ 𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥∃𝑚∃𝑛 ∈ (ℤ≥‘𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥∃𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto→𝑊 ∧ 𝑥 = (seq1( + , (𝐹 ∘ 𝑓))‘(♯‘𝑊))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∀wral 3048 ∃wrex 3057 {crab 3396 Vcvv 3437 ∖ cdif 3895 ⊆ wss 3898 ifcif 4476 ◡ccnv 5620 ran crn 5622 “ cima 5624 ∘ ccom 5625 ℩cio 6442 ⟶wf 6484 –1-1-onto→wf1o 6487 ‘cfv 6488 (class class class)co 7354 1c1 11016 ℤ≥cuz 12740 ...cfz 13411 seqcseq 13912 ♯chash 14241 Basecbs 17124 +gcplusg 17165 0gc0g 17347 Σg cgsu 17348 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-seq 13913 df-gsum 17350 |
| This theorem is referenced by: gsumress 18594 gsumval1 18595 gsumval2a 18597 gsumval3a 19819 |
| Copyright terms: Public domain | W3C validator |