MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval Structured version   Visualization version   GIF version

Theorem gsumval 18715
Description: Expand out the substitutions in df-gsum 17502. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.o 𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}
gsumval.w (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))
gsumval.g (𝜑𝐺𝑉)
gsumval.a (𝜑𝐴𝑋)
gsumval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
gsumval (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝑓,𝑚,𝑛,𝑥,𝜑   𝑓,𝐹,𝑚,𝑛,𝑥   𝑓,𝐺,𝑚,𝑛,𝑥   + ,𝑠,𝑡,𝑥   𝑓,𝑂,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑠)   𝐴(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝐵(𝑓,𝑚,𝑛)   + (𝑓,𝑚,𝑛)   𝐹(𝑡,𝑠)   𝐺(𝑡,𝑠)   𝑂(𝑡,𝑠)   𝑉(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝑊(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝑋(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   0 (𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)

Proof of Theorem gsumval
StepHypRef Expression
1 gsumval.b . 2 𝐵 = (Base‘𝐺)
2 gsumval.z . 2 0 = (0g𝐺)
3 gsumval.p . 2 + = (+g𝐺)
4 gsumval.o . 2 𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}
5 gsumval.w . 2 (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))
6 gsumval.g . 2 (𝜑𝐺𝑉)
7 gsumval.f . . 3 (𝜑𝐹:𝐴𝐵)
8 gsumval.a . . 3 (𝜑𝐴𝑋)
91fvexi 6934 . . . 4 𝐵 ∈ V
109a1i 11 . . 3 (𝜑𝐵 ∈ V)
11 fex2 7974 . . 3 ((𝐹:𝐴𝐵𝐴𝑋𝐵 ∈ V) → 𝐹 ∈ V)
127, 8, 10, 11syl3anc 1371 . 2 (𝜑𝐹 ∈ V)
137fdmd 6757 . 2 (𝜑 → dom 𝐹 = 𝐴)
141, 2, 3, 4, 5, 6, 12, 13gsumvalx 18714 1 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cdif 3973  wss 3976  ifcif 4548  ccnv 5699  ran crn 5701  cima 5703  ccom 5704  cio 6523  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  1c1 11185  cuz 12903  ...cfz 13567  seqcseq 14052  chash 14379  Basecbs 17258  +gcplusg 17311  0gc0g 17499   Σg cgsu 17500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seq 14053  df-gsum 17502
This theorem is referenced by:  gsumress  18720  gsumval1  18721  gsumval2a  18723  gsumval3a  19945
  Copyright terms: Public domain W3C validator