MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumval Structured version   Visualization version   GIF version

Theorem gsumval 18644
Description: Expand out the substitutions in df-gsum 17431. (Contributed by Mario Carneiro, 7-Dec-2014.)
Hypotheses
Ref Expression
gsumval.b 𝐵 = (Base‘𝐺)
gsumval.z 0 = (0g𝐺)
gsumval.p + = (+g𝐺)
gsumval.o 𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}
gsumval.w (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))
gsumval.g (𝜑𝐺𝑉)
gsumval.a (𝜑𝐴𝑋)
gsumval.f (𝜑𝐹:𝐴𝐵)
Assertion
Ref Expression
gsumval (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐵   𝑓,𝑚,𝑛,𝑥,𝜑   𝑓,𝐹,𝑚,𝑛,𝑥   𝑓,𝐺,𝑚,𝑛,𝑥   + ,𝑠,𝑡,𝑥   𝑓,𝑂,𝑚,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑡,𝑠)   𝐴(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝐵(𝑓,𝑚,𝑛)   + (𝑓,𝑚,𝑛)   𝐹(𝑡,𝑠)   𝐺(𝑡,𝑠)   𝑂(𝑡,𝑠)   𝑉(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝑊(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   𝑋(𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)   0 (𝑥,𝑡,𝑓,𝑚,𝑛,𝑠)

Proof of Theorem gsumval
StepHypRef Expression
1 gsumval.b . 2 𝐵 = (Base‘𝐺)
2 gsumval.z . 2 0 = (0g𝐺)
3 gsumval.p . 2 + = (+g𝐺)
4 gsumval.o . 2 𝑂 = {𝑠𝐵 ∣ ∀𝑡𝐵 ((𝑠 + 𝑡) = 𝑡 ∧ (𝑡 + 𝑠) = 𝑡)}
5 gsumval.w . 2 (𝜑𝑊 = (𝐹 “ (V ∖ 𝑂)))
6 gsumval.g . 2 (𝜑𝐺𝑉)
7 gsumval.f . . 3 (𝜑𝐹:𝐴𝐵)
8 gsumval.a . . 3 (𝜑𝐴𝑋)
91fvexi 6916 . . . 4 𝐵 ∈ V
109a1i 11 . . 3 (𝜑𝐵 ∈ V)
11 fex2 7947 . . 3 ((𝐹:𝐴𝐵𝐴𝑋𝐵 ∈ V) → 𝐹 ∈ V)
127, 8, 10, 11syl3anc 1368 . 2 (𝜑𝐹 ∈ V)
137fdmd 6738 . 2 (𝜑 → dom 𝐹 = 𝐴)
141, 2, 3, 4, 5, 6, 12, 13gsumvalx 18643 1 (𝜑 → (𝐺 Σg 𝐹) = if(ran 𝐹𝑂, 0 , if(𝐴 ∈ ran ..., (℩𝑥𝑚𝑛 ∈ (ℤ𝑚)(𝐴 = (𝑚...𝑛) ∧ 𝑥 = (seq𝑚( + , 𝐹)‘𝑛))), (℩𝑥𝑓(𝑓:(1...(♯‘𝑊))–1-1-onto𝑊𝑥 = (seq1( + , (𝐹𝑓))‘(♯‘𝑊)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3058  wrex 3067  {crab 3430  Vcvv 3473  cdif 3946  wss 3949  ifcif 4532  ccnv 5681  ran crn 5683  cima 5685  ccom 5686  cio 6503  wf 6549  1-1-ontowf1o 6552  cfv 6553  (class class class)co 7426  1c1 11147  cuz 12860  ...cfz 13524  seqcseq 14006  chash 14329  Basecbs 17187  +gcplusg 17240  0gc0g 17428   Σg cgsu 17429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-seq 14007  df-gsum 17431
This theorem is referenced by:  gsumress  18649  gsumval1  18650  gsumval2a  18652  gsumval3a  19865
  Copyright terms: Public domain W3C validator