| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvlt0 | Structured version Visualization version GIF version | ||
| Description: A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvlt0.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) |
| Ref | Expression |
|---|---|
| dvlt0 | ⊢ (𝜑 → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | dvgt0.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | dvgt0.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 4 | dvlt0.d | . 2 ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) | |
| 5 | gtso 11325 | . 2 ⊢ ◡ < Or ℝ | |
| 6 | 1, 2, 3, 4 | dvgt0lem1 25996 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∈ (-∞(,)0)) |
| 7 | eliooord 13429 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∈ (-∞(,)0) → (-∞ < (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∧ (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0)) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (-∞ < (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∧ (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0)) |
| 9 | 8 | simprd 495 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0) |
| 10 | cncff 24874 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
| 11 | 3, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 12 | 11 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 13 | simplrr 777 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵)) | |
| 14 | 12, 13 | ffvelcdmd 7086 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) ∈ ℝ) |
| 15 | simplrl 776 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵)) | |
| 16 | 12, 15 | ffvelcdmd 7086 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥) ∈ ℝ) |
| 17 | 14, 16 | resubcld 11674 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) ∈ ℝ) |
| 18 | 0red 11247 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ) | |
| 19 | iccssre 13452 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 20 | 1, 2, 19 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 21 | 20 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ ℝ) |
| 22 | 21, 13 | sseldd 3966 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) |
| 23 | 21, 15 | sseldd 3966 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) |
| 24 | 22, 23 | resubcld 11674 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ) |
| 25 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦) | |
| 26 | 23, 22 | posdifd 11833 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥 < 𝑦 ↔ 0 < (𝑦 − 𝑥))) |
| 27 | 25, 26 | mpbid 232 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 0 < (𝑦 − 𝑥)) |
| 28 | ltdivmul 12126 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) − (𝐹‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((𝑦 − 𝑥) ∈ ℝ ∧ 0 < (𝑦 − 𝑥))) → ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0 ↔ ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0))) | |
| 29 | 17, 18, 24, 27, 28 | syl112anc 1375 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0 ↔ ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0))) |
| 30 | 9, 29 | mpbid 232 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0)) |
| 31 | 24 | recnd 11272 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℂ) |
| 32 | 31 | mul01d 11443 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑦 − 𝑥) · 0) = 0) |
| 33 | 30, 32 | breqtrd 5151 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) < 0) |
| 34 | 14, 16, 18 | ltsubaddd 11842 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) < 0 ↔ (𝐹‘𝑦) < (0 + (𝐹‘𝑥)))) |
| 35 | 33, 34 | mpbid 232 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) < (0 + (𝐹‘𝑥))) |
| 36 | 16 | recnd 11272 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥) ∈ ℂ) |
| 37 | 36 | addlidd 11445 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (0 + (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 38 | 35, 37 | breqtrd 5151 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) < (𝐹‘𝑥)) |
| 39 | fvex 6900 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 40 | fvex 6900 | . . . 4 ⊢ (𝐹‘𝑦) ∈ V | |
| 41 | 39, 40 | brcnv 5875 | . . 3 ⊢ ((𝐹‘𝑥)◡ < (𝐹‘𝑦) ↔ (𝐹‘𝑦) < (𝐹‘𝑥)) |
| 42 | 38, 41 | sylibr 234 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)◡ < (𝐹‘𝑦)) |
| 43 | 1, 2, 3, 4, 5, 42 | dvgt0lem2 25997 | 1 ⊢ (𝜑 → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ⊆ wss 3933 class class class wbr 5125 ◡ccnv 5666 ran crn 5668 ⟶wf 6538 ‘cfv 6542 Isom wiso 6543 (class class class)co 7414 ℝcr 11137 0cc0 11138 + caddc 11141 · cmul 11143 -∞cmnf 11276 < clt 11278 − cmin 11475 / cdiv 11903 (,)cioo 13370 [,]cicc 13373 –cn→ccncf 24857 D cdv 25853 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13678 df-seq 14026 df-exp 14086 df-hash 14353 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-pt 17465 df-prds 17468 df-xrs 17523 df-qtop 17528 df-imas 17529 df-xps 17531 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-fbas 21328 df-fg 21329 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cld 22992 df-ntr 22993 df-cls 22994 df-nei 23071 df-lp 23109 df-perf 23110 df-cn 23200 df-cnp 23201 df-haus 23288 df-cmp 23360 df-tx 23535 df-hmeo 23728 df-fil 23819 df-fm 23911 df-flim 23912 df-flf 23913 df-xms 24294 df-ms 24295 df-tms 24296 df-cncf 24859 df-limc 25856 df-dv 25857 |
| This theorem is referenced by: dvne0 26005 |
| Copyright terms: Public domain | W3C validator |