| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dvlt0 | Structured version Visualization version GIF version | ||
| Description: A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
| Ref | Expression |
|---|---|
| dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| dvlt0.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) |
| Ref | Expression |
|---|---|
| dvlt0 | ⊢ (𝜑 → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvgt0.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 2 | dvgt0.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 3 | dvgt0.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
| 4 | dvlt0.d | . 2 ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) | |
| 5 | gtso 11215 | . 2 ⊢ ◡ < Or ℝ | |
| 6 | 1, 2, 3, 4 | dvgt0lem1 25923 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∈ (-∞(,)0)) |
| 7 | eliooord 13326 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∈ (-∞(,)0) → (-∞ < (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∧ (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0)) | |
| 8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (-∞ < (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∧ (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0)) |
| 9 | 8 | simprd 495 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0) |
| 10 | cncff 24802 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
| 11 | 3, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 12 | 11 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 13 | simplrr 777 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵)) | |
| 14 | 12, 13 | ffvelcdmd 7023 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) ∈ ℝ) |
| 15 | simplrl 776 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵)) | |
| 16 | 12, 15 | ffvelcdmd 7023 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥) ∈ ℝ) |
| 17 | 14, 16 | resubcld 11566 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) ∈ ℝ) |
| 18 | 0red 11137 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ) | |
| 19 | iccssre 13350 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
| 20 | 1, 2, 19 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 21 | 20 | ad2antrr 726 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ ℝ) |
| 22 | 21, 13 | sseldd 3938 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) |
| 23 | 21, 15 | sseldd 3938 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) |
| 24 | 22, 23 | resubcld 11566 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ) |
| 25 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦) | |
| 26 | 23, 22 | posdifd 11725 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥 < 𝑦 ↔ 0 < (𝑦 − 𝑥))) |
| 27 | 25, 26 | mpbid 232 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 0 < (𝑦 − 𝑥)) |
| 28 | ltdivmul 12018 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) − (𝐹‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((𝑦 − 𝑥) ∈ ℝ ∧ 0 < (𝑦 − 𝑥))) → ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0 ↔ ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0))) | |
| 29 | 17, 18, 24, 27, 28 | syl112anc 1376 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0 ↔ ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0))) |
| 30 | 9, 29 | mpbid 232 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0)) |
| 31 | 24 | recnd 11162 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℂ) |
| 32 | 31 | mul01d 11333 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑦 − 𝑥) · 0) = 0) |
| 33 | 30, 32 | breqtrd 5121 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) < 0) |
| 34 | 14, 16, 18 | ltsubaddd 11734 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) < 0 ↔ (𝐹‘𝑦) < (0 + (𝐹‘𝑥)))) |
| 35 | 33, 34 | mpbid 232 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) < (0 + (𝐹‘𝑥))) |
| 36 | 16 | recnd 11162 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥) ∈ ℂ) |
| 37 | 36 | addlidd 11335 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (0 + (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 38 | 35, 37 | breqtrd 5121 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) < (𝐹‘𝑥)) |
| 39 | fvex 6839 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
| 40 | fvex 6839 | . . . 4 ⊢ (𝐹‘𝑦) ∈ V | |
| 41 | 39, 40 | brcnv 5829 | . . 3 ⊢ ((𝐹‘𝑥)◡ < (𝐹‘𝑦) ↔ (𝐹‘𝑦) < (𝐹‘𝑥)) |
| 42 | 38, 41 | sylibr 234 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)◡ < (𝐹‘𝑦)) |
| 43 | 1, 2, 3, 4, 5, 42 | dvgt0lem2 25924 | 1 ⊢ (𝜑 → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ⊆ wss 3905 class class class wbr 5095 ◡ccnv 5622 ran crn 5624 ⟶wf 6482 ‘cfv 6486 Isom wiso 6487 (class class class)co 7353 ℝcr 11027 0cc0 11028 + caddc 11031 · cmul 11033 -∞cmnf 11166 < clt 11168 − cmin 11365 / cdiv 11795 (,)cioo 13266 [,]cicc 13269 –cn→ccncf 24785 D cdv 25780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-seq 13927 df-exp 13987 df-hash 14256 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 |
| This theorem is referenced by: dvne0 25932 |
| Copyright terms: Public domain | W3C validator |