![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvlt0 | Structured version Visualization version GIF version |
Description: A function on a closed interval with negative derivative is decreasing. (Contributed by Mario Carneiro, 19-Feb-2015.) |
Ref | Expression |
---|---|
dvgt0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dvgt0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dvgt0.f | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
dvlt0.d | ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) |
Ref | Expression |
---|---|
dvlt0 | ⊢ (𝜑 → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvgt0.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | dvgt0.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
3 | dvgt0.f | . 2 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) | |
4 | dvlt0.d | . 2 ⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶(-∞(,)0)) | |
5 | gtso 11293 | . 2 ⊢ ◡ < Or ℝ | |
6 | 1, 2, 3, 4 | dvgt0lem1 25859 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∈ (-∞(,)0)) |
7 | eliooord 13381 | . . . . . . . . 9 ⊢ ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∈ (-∞(,)0) → (-∞ < (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∧ (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0)) | |
8 | 6, 7 | syl 17 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (-∞ < (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) ∧ (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0)) |
9 | 8 | simprd 495 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0) |
10 | cncff 24737 | . . . . . . . . . . . 12 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) | |
11 | 3, 10 | syl 17 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
12 | 11 | ad2antrr 723 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
13 | simplrr 775 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ (𝐴[,]𝐵)) | |
14 | 12, 13 | ffvelcdmd 7078 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) ∈ ℝ) |
15 | simplrl 774 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ (𝐴[,]𝐵)) | |
16 | 12, 15 | ffvelcdmd 7078 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥) ∈ ℝ) |
17 | 14, 16 | resubcld 11640 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) ∈ ℝ) |
18 | 0red 11215 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 0 ∈ ℝ) | |
19 | iccssre 13404 | . . . . . . . . . . . 12 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) | |
20 | 1, 2, 19 | syl2anc 583 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
21 | 20 | ad2antrr 723 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐴[,]𝐵) ⊆ ℝ) |
22 | 21, 13 | sseldd 3976 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑦 ∈ ℝ) |
23 | 21, 15 | sseldd 3976 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 ∈ ℝ) |
24 | 22, 23 | resubcld 11640 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℝ) |
25 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 𝑥 < 𝑦) | |
26 | 23, 22 | posdifd 11799 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑥 < 𝑦 ↔ 0 < (𝑦 − 𝑥))) |
27 | 25, 26 | mpbid 231 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → 0 < (𝑦 − 𝑥)) |
28 | ltdivmul 12087 | . . . . . . . 8 ⊢ ((((𝐹‘𝑦) − (𝐹‘𝑥)) ∈ ℝ ∧ 0 ∈ ℝ ∧ ((𝑦 − 𝑥) ∈ ℝ ∧ 0 < (𝑦 − 𝑥))) → ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0 ↔ ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0))) | |
29 | 17, 18, 24, 27, 28 | syl112anc 1371 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((((𝐹‘𝑦) − (𝐹‘𝑥)) / (𝑦 − 𝑥)) < 0 ↔ ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0))) |
30 | 9, 29 | mpbid 231 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) < ((𝑦 − 𝑥) · 0)) |
31 | 24 | recnd 11240 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝑦 − 𝑥) ∈ ℂ) |
32 | 31 | mul01d 11411 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝑦 − 𝑥) · 0) = 0) |
33 | 30, 32 | breqtrd 5165 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → ((𝐹‘𝑦) − (𝐹‘𝑥)) < 0) |
34 | 14, 16, 18 | ltsubaddd 11808 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (((𝐹‘𝑦) − (𝐹‘𝑥)) < 0 ↔ (𝐹‘𝑦) < (0 + (𝐹‘𝑥)))) |
35 | 33, 34 | mpbid 231 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) < (0 + (𝐹‘𝑥))) |
36 | 16 | recnd 11240 | . . . . 5 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥) ∈ ℂ) |
37 | 36 | addlidd 11413 | . . . 4 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (0 + (𝐹‘𝑥)) = (𝐹‘𝑥)) |
38 | 35, 37 | breqtrd 5165 | . . 3 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑦) < (𝐹‘𝑥)) |
39 | fvex 6895 | . . . 4 ⊢ (𝐹‘𝑥) ∈ V | |
40 | fvex 6895 | . . . 4 ⊢ (𝐹‘𝑦) ∈ V | |
41 | 39, 40 | brcnv 5873 | . . 3 ⊢ ((𝐹‘𝑥)◡ < (𝐹‘𝑦) ↔ (𝐹‘𝑦) < (𝐹‘𝑥)) |
42 | 38, 41 | sylibr 233 | . 2 ⊢ (((𝜑 ∧ (𝑥 ∈ (𝐴[,]𝐵) ∧ 𝑦 ∈ (𝐴[,]𝐵))) ∧ 𝑥 < 𝑦) → (𝐹‘𝑥)◡ < (𝐹‘𝑦)) |
43 | 1, 2, 3, 4, 5, 42 | dvgt0lem2 25860 | 1 ⊢ (𝜑 → 𝐹 Isom < , ◡ < ((𝐴[,]𝐵), ran 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ⊆ wss 3941 class class class wbr 5139 ◡ccnv 5666 ran crn 5668 ⟶wf 6530 ‘cfv 6534 Isom wiso 6535 (class class class)co 7402 ℝcr 11106 0cc0 11107 + caddc 11110 · cmul 11112 -∞cmnf 11244 < clt 11246 − cmin 11442 / cdiv 11869 (,)cioo 13322 [,]cicc 13325 –cn→ccncf 24720 D cdv 25716 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 ax-pre-mulgt0 11184 ax-pre-sup 11185 ax-addf 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-tp 4626 df-op 4628 df-uni 4901 df-int 4942 df-iun 4990 df-iin 4991 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-se 5623 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-isom 6543 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-er 8700 df-map 8819 df-pm 8820 df-ixp 8889 df-en 8937 df-dom 8938 df-sdom 8939 df-fin 8940 df-fsupp 9359 df-fi 9403 df-sup 9434 df-inf 9435 df-oi 9502 df-card 9931 df-pnf 11248 df-mnf 11249 df-xr 11250 df-ltxr 11251 df-le 11252 df-sub 11444 df-neg 11445 df-div 11870 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-z 12557 df-dec 12676 df-uz 12821 df-q 12931 df-rp 12973 df-xneg 13090 df-xadd 13091 df-xmul 13092 df-ioo 13326 df-ico 13328 df-icc 13329 df-fz 13483 df-fzo 13626 df-seq 13965 df-exp 14026 df-hash 14289 df-cj 15044 df-re 15045 df-im 15046 df-sqrt 15180 df-abs 15181 df-struct 17081 df-sets 17098 df-slot 17116 df-ndx 17128 df-base 17146 df-ress 17175 df-plusg 17211 df-mulr 17212 df-starv 17213 df-sca 17214 df-vsca 17215 df-ip 17216 df-tset 17217 df-ple 17218 df-ds 17220 df-unif 17221 df-hom 17222 df-cco 17223 df-rest 17369 df-topn 17370 df-0g 17388 df-gsum 17389 df-topgen 17390 df-pt 17391 df-prds 17394 df-xrs 17449 df-qtop 17454 df-imas 17455 df-xps 17457 df-mre 17531 df-mrc 17532 df-acs 17534 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-submnd 18706 df-mulg 18988 df-cntz 19225 df-cmn 19694 df-psmet 21222 df-xmet 21223 df-met 21224 df-bl 21225 df-mopn 21226 df-fbas 21227 df-fg 21228 df-cnfld 21231 df-top 22720 df-topon 22737 df-topsp 22759 df-bases 22773 df-cld 22847 df-ntr 22848 df-cls 22849 df-nei 22926 df-lp 22964 df-perf 22965 df-cn 23055 df-cnp 23056 df-haus 23143 df-cmp 23215 df-tx 23390 df-hmeo 23583 df-fil 23674 df-fm 23766 df-flim 23767 df-flf 23768 df-xms 24150 df-ms 24151 df-tms 24152 df-cncf 24722 df-limc 25719 df-dv 25720 |
This theorem is referenced by: dvne0 25868 |
Copyright terms: Public domain | W3C validator |