![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hosval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hosval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hosmval 31493 | . . . 4 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) | |
2 | 1 | fveq1d 6886 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))‘𝐴)) |
3 | fveq2 6884 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
4 | fveq2 6884 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
5 | 3, 4 | oveq12d 7422 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
6 | eqid 2726 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
7 | ovex 7437 | . . . 4 ⊢ ((𝑆‘𝐴) +ℎ (𝑇‘𝐴)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6991 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
9 | 2, 8 | sylan9eq 2786 | . 2 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
10 | 9 | 3impa 1107 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ↦ cmpt 5224 ⟶wf 6532 ‘cfv 6536 (class class class)co 7404 ℋchba 30677 +ℎ cva 30678 +op chos 30696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-hilex 30757 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-oprab 7408 df-mpo 7409 df-map 8821 df-hosum 31488 |
This theorem is referenced by: hoscl 31503 hoaddcomi 31530 hodsi 31533 hoaddassi 31534 hocadddiri 31537 hoaddridi 31544 honegsubi 31554 hoadddi 31561 hoadddir 31562 lnophsi 31759 hmops 31778 adjadd 31851 nmoptrii 31852 leopadd 31890 pjsdii 31913 pjscji 31928 pjtoi 31937 |
Copyright terms: Public domain | W3C validator |