Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hosval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hosval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hosmval 30097 | . . . 4 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) | |
2 | 1 | fveq1d 6776 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))‘𝐴)) |
3 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
4 | fveq2 6774 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
5 | 3, 4 | oveq12d 7293 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
6 | eqid 2738 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
7 | ovex 7308 | . . . 4 ⊢ ((𝑆‘𝐴) +ℎ (𝑇‘𝐴)) ∈ V | |
8 | 5, 6, 7 | fvmpt 6875 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
9 | 2, 8 | sylan9eq 2798 | . 2 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
10 | 9 | 3impa 1109 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℋchba 29281 +ℎ cva 29282 +op chos 29300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-hilex 29361 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-map 8617 df-hosum 30092 |
This theorem is referenced by: hoscl 30107 hoaddcomi 30134 hodsi 30137 hoaddassi 30138 hocadddiri 30141 hoaddid1i 30148 honegsubi 30158 hoadddi 30165 hoadddir 30166 lnophsi 30363 hmops 30382 adjadd 30455 nmoptrii 30456 leopadd 30494 pjsdii 30517 pjscji 30532 pjtoi 30541 |
Copyright terms: Public domain | W3C validator |