![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hosval | Structured version Visualization version GIF version |
Description: Value of the sum of two Hilbert space operators. (Contributed by NM, 10-Nov-2000.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hosval | ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hosmval 31558 | . . . 4 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → (𝑆 +op 𝑇) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))) | |
2 | 1 | fveq1d 6899 | . . 3 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))‘𝐴)) |
3 | fveq2 6897 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑆‘𝑥) = (𝑆‘𝐴)) | |
4 | fveq2 6897 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑇‘𝑥) = (𝑇‘𝐴)) | |
5 | 3, 4 | oveq12d 7438 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
6 | eqid 2728 | . . . 4 ⊢ (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) = (𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥))) | |
7 | ovex 7453 | . . . 4 ⊢ ((𝑆‘𝐴) +ℎ (𝑇‘𝐴)) ∈ V | |
8 | 5, 6, 7 | fvmpt 7005 | . . 3 ⊢ (𝐴 ∈ ℋ → ((𝑥 ∈ ℋ ↦ ((𝑆‘𝑥) +ℎ (𝑇‘𝑥)))‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
9 | 2, 8 | sylan9eq 2788 | . 2 ⊢ (((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ) ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
10 | 9 | 3impa 1108 | 1 ⊢ ((𝑆: ℋ⟶ ℋ ∧ 𝑇: ℋ⟶ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑆 +op 𝑇)‘𝐴) = ((𝑆‘𝐴) +ℎ (𝑇‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5231 ⟶wf 6544 ‘cfv 6548 (class class class)co 7420 ℋchba 30742 +ℎ cva 30743 +op chos 30761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-hilex 30822 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-oprab 7424 df-mpo 7425 df-map 8847 df-hosum 31553 |
This theorem is referenced by: hoscl 31568 hoaddcomi 31595 hodsi 31598 hoaddassi 31599 hocadddiri 31602 hoaddridi 31609 honegsubi 31619 hoadddi 31626 hoadddir 31627 lnophsi 31824 hmops 31843 adjadd 31916 nmoptrii 31917 leopadd 31955 pjsdii 31978 pjscji 31993 pjtoi 32002 |
Copyright terms: Public domain | W3C validator |