![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hstle1 | Structured version Visualization version GIF version |
Description: The norm of the value of a Hilbert-space-valued state is less than or equal to one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hstle1 | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | choccl 31134 | . . . . . . 7 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
2 | hstcl 32045 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
3 | 1, 2 | sylan2 591 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
4 | normcl 30953 | . . . . . 6 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) |
6 | 5 | sqge0d 14139 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
7 | hstcl 32045 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
8 | normcl 30953 | . . . . . . 7 ⊢ ((𝑆‘𝐴) ∈ ℋ → (normℎ‘(𝑆‘𝐴)) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ∈ ℝ) |
10 | 9 | resqcld 14127 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴))↑2) ∈ ℝ) |
11 | 5 | resqcld 14127 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ) |
12 | 10, 11 | addge01d 11838 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (0 ≤ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)))) |
13 | 6, 12 | mpbid 231 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴))↑2) ≤ (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
14 | hstnmoc 32051 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | |
15 | sq1 14196 | . . . 4 ⊢ (1↑2) = 1 | |
16 | 14, 15 | eqtr4di 2785 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = (1↑2)) |
17 | 13, 16 | breqtrd 5176 | . 2 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2)) |
18 | normge0 30954 | . . . 4 ⊢ ((𝑆‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘(𝑆‘𝐴))) | |
19 | 7, 18 | syl 17 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ (normℎ‘(𝑆‘𝐴))) |
20 | 1re 11250 | . . . 4 ⊢ 1 ∈ ℝ | |
21 | 0le1 11773 | . . . 4 ⊢ 0 ≤ 1 | |
22 | le2sq 14136 | . . . 4 ⊢ ((((normℎ‘(𝑆‘𝐴)) ∈ ℝ ∧ 0 ≤ (normℎ‘(𝑆‘𝐴))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((normℎ‘(𝑆‘𝐴)) ≤ 1 ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2))) | |
23 | 20, 21, 22 | mpanr12 703 | . . 3 ⊢ (((normℎ‘(𝑆‘𝐴)) ∈ ℝ ∧ 0 ≤ (normℎ‘(𝑆‘𝐴))) → ((normℎ‘(𝑆‘𝐴)) ≤ 1 ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2))) |
24 | 9, 19, 23 | syl2anc 582 | . 2 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) ≤ 1 ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2))) |
25 | 17, 24 | mpbird 256 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 class class class wbr 5150 ‘cfv 6551 (class class class)co 7424 ℝcr 11143 0cc0 11144 1c1 11145 + caddc 11147 ≤ cle 11285 2c2 12303 ↑cexp 14064 ℋchba 30747 normℎcno 30751 Cℋ cch 30757 ⊥cort 30758 CHStateschst 30791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-rep 5287 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 ax-inf2 9670 ax-cnex 11200 ax-resscn 11201 ax-1cn 11202 ax-icn 11203 ax-addcl 11204 ax-addrcl 11205 ax-mulcl 11206 ax-mulrcl 11207 ax-mulcom 11208 ax-addass 11209 ax-mulass 11210 ax-distr 11211 ax-i2m1 11212 ax-1ne0 11213 ax-1rid 11214 ax-rnegex 11215 ax-rrecex 11216 ax-cnre 11217 ax-pre-lttri 11218 ax-pre-lttrn 11219 ax-pre-ltadd 11220 ax-pre-mulgt0 11221 ax-pre-sup 11222 ax-addf 11223 ax-mulf 11224 ax-hilex 30827 ax-hfvadd 30828 ax-hvcom 30829 ax-hvass 30830 ax-hv0cl 30831 ax-hvaddid 30832 ax-hfvmul 30833 ax-hvmulid 30834 ax-hvmulass 30835 ax-hvdistr1 30836 ax-hvdistr2 30837 ax-hvmul0 30838 ax-hfi 30907 ax-his1 30910 ax-his2 30911 ax-his3 30912 ax-his4 30913 ax-hcompl 31030 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4911 df-int 4952 df-iun 5000 df-iin 5001 df-br 5151 df-opab 5213 df-mpt 5234 df-tr 5268 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5635 df-se 5636 df-we 5637 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-pred 6308 df-ord 6375 df-on 6376 df-lim 6377 df-suc 6378 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-f1 6556 df-fo 6557 df-f1o 6558 df-fv 6559 df-isom 6560 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-of 7689 df-om 7875 df-1st 7997 df-2nd 7998 df-supp 8170 df-frecs 8291 df-wrecs 8322 df-recs 8396 df-rdg 8435 df-1o 8491 df-2o 8492 df-er 8729 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9392 df-fi 9440 df-sup 9471 df-inf 9472 df-oi 9539 df-card 9968 df-pnf 11286 df-mnf 11287 df-xr 11288 df-ltxr 11289 df-le 11290 df-sub 11482 df-neg 11483 df-div 11908 df-nn 12249 df-2 12311 df-3 12312 df-4 12313 df-5 12314 df-6 12315 df-7 12316 df-8 12317 df-9 12318 df-n0 12509 df-z 12595 df-dec 12714 df-uz 12859 df-q 12969 df-rp 13013 df-xneg 13130 df-xadd 13131 df-xmul 13132 df-ioo 13366 df-icc 13369 df-fz 13523 df-fzo 13666 df-seq 14005 df-exp 14065 df-hash 14328 df-cj 15084 df-re 15085 df-im 15086 df-sqrt 15220 df-abs 15221 df-clim 15470 df-sum 15671 df-struct 17121 df-sets 17138 df-slot 17156 df-ndx 17168 df-base 17186 df-ress 17215 df-plusg 17251 df-mulr 17252 df-starv 17253 df-sca 17254 df-vsca 17255 df-ip 17256 df-tset 17257 df-ple 17258 df-ds 17260 df-unif 17261 df-hom 17262 df-cco 17263 df-rest 17409 df-topn 17410 df-0g 17428 df-gsum 17429 df-topgen 17430 df-pt 17431 df-prds 17434 df-xrs 17489 df-qtop 17494 df-imas 17495 df-xps 17497 df-mre 17571 df-mrc 17572 df-acs 17574 df-mgm 18605 df-sgrp 18684 df-mnd 18700 df-submnd 18746 df-mulg 19029 df-cntz 19273 df-cmn 19742 df-psmet 21276 df-xmet 21277 df-met 21278 df-bl 21279 df-mopn 21280 df-cnfld 21285 df-top 22814 df-topon 22831 df-topsp 22853 df-bases 22867 df-cn 23149 df-cnp 23150 df-lm 23151 df-haus 23237 df-tx 23484 df-hmeo 23677 df-xms 24244 df-ms 24245 df-tms 24246 df-cau 25202 df-grpo 30321 df-gid 30322 df-ginv 30323 df-gdiv 30324 df-ablo 30373 df-vc 30387 df-nv 30420 df-va 30423 df-ba 30424 df-sm 30425 df-0v 30426 df-vs 30427 df-nmcv 30428 df-ims 30429 df-dip 30529 df-hnorm 30796 df-hvsub 30799 df-hlim 30800 df-hcau 30801 df-sh 31035 df-ch 31049 df-oc 31080 df-ch0 31081 df-chj 31138 df-hst 32040 |
This theorem is referenced by: hstle 32058 hstles 32059 |
Copyright terms: Public domain | W3C validator |