![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hstle1 | Structured version Visualization version GIF version |
Description: The norm of the value of a Hilbert-space-valued state is less than or equal to one. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hstle1 | ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ≤ 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | choccl 28737 | . . . . . . 7 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
2 | hstcl 29648 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ (⊥‘𝐴) ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) | |
3 | 1, 2 | sylan2 586 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘(⊥‘𝐴)) ∈ ℋ) |
4 | normcl 28554 | . . . . . 6 ⊢ ((𝑆‘(⊥‘𝐴)) ∈ ℋ → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) | |
5 | 3, 4 | syl 17 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘(⊥‘𝐴))) ∈ ℝ) |
6 | 5 | sqge0d 13357 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) |
7 | hstcl 29648 | . . . . . . 7 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
8 | normcl 28554 | . . . . . . 7 ⊢ ((𝑆‘𝐴) ∈ ℋ → (normℎ‘(𝑆‘𝐴)) ∈ ℝ) | |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ∈ ℝ) |
10 | 9 | resqcld 13356 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴))↑2) ∈ ℝ) |
11 | 5 | resqcld 13356 | . . . . 5 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ∈ ℝ) |
12 | 10, 11 | addge01d 10963 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (0 ≤ ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2) ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)))) |
13 | 6, 12 | mpbid 224 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴))↑2) ≤ (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2))) |
14 | hstnmoc 29654 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = 1) | |
15 | sq1 13277 | . . . 4 ⊢ (1↑2) = 1 | |
16 | 14, 15 | syl6eqr 2832 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘(⊥‘𝐴)))↑2)) = (1↑2)) |
17 | 13, 16 | breqtrd 4912 | . 2 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2)) |
18 | normge0 28555 | . . . 4 ⊢ ((𝑆‘𝐴) ∈ ℋ → 0 ≤ (normℎ‘(𝑆‘𝐴))) | |
19 | 7, 18 | syl 17 | . . 3 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → 0 ≤ (normℎ‘(𝑆‘𝐴))) |
20 | 1re 10376 | . . . 4 ⊢ 1 ∈ ℝ | |
21 | 0le1 10898 | . . . 4 ⊢ 0 ≤ 1 | |
22 | le2sq 13257 | . . . 4 ⊢ ((((normℎ‘(𝑆‘𝐴)) ∈ ℝ ∧ 0 ≤ (normℎ‘(𝑆‘𝐴))) ∧ (1 ∈ ℝ ∧ 0 ≤ 1)) → ((normℎ‘(𝑆‘𝐴)) ≤ 1 ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2))) | |
23 | 20, 21, 22 | mpanr12 695 | . . 3 ⊢ (((normℎ‘(𝑆‘𝐴)) ∈ ℝ ∧ 0 ≤ (normℎ‘(𝑆‘𝐴))) → ((normℎ‘(𝑆‘𝐴)) ≤ 1 ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2))) |
24 | 9, 19, 23 | syl2anc 579 | . 2 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → ((normℎ‘(𝑆‘𝐴)) ≤ 1 ↔ ((normℎ‘(𝑆‘𝐴))↑2) ≤ (1↑2))) |
25 | 17, 24 | mpbird 249 | 1 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (normℎ‘(𝑆‘𝐴)) ≤ 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 ∈ wcel 2107 class class class wbr 4886 ‘cfv 6135 (class class class)co 6922 ℝcr 10271 0cc0 10272 1c1 10273 + caddc 10275 ≤ cle 10412 2c2 11430 ↑cexp 13178 ℋchba 28348 normℎcno 28352 Cℋ cch 28358 ⊥cort 28359 CHStateschst 28392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5006 ax-sep 5017 ax-nul 5025 ax-pow 5077 ax-pr 5138 ax-un 7226 ax-inf2 8835 ax-cnex 10328 ax-resscn 10329 ax-1cn 10330 ax-icn 10331 ax-addcl 10332 ax-addrcl 10333 ax-mulcl 10334 ax-mulrcl 10335 ax-mulcom 10336 ax-addass 10337 ax-mulass 10338 ax-distr 10339 ax-i2m1 10340 ax-1ne0 10341 ax-1rid 10342 ax-rnegex 10343 ax-rrecex 10344 ax-cnre 10345 ax-pre-lttri 10346 ax-pre-lttrn 10347 ax-pre-ltadd 10348 ax-pre-mulgt0 10349 ax-pre-sup 10350 ax-addf 10351 ax-mulf 10352 ax-hilex 28428 ax-hfvadd 28429 ax-hvcom 28430 ax-hvass 28431 ax-hv0cl 28432 ax-hvaddid 28433 ax-hfvmul 28434 ax-hvmulid 28435 ax-hvmulass 28436 ax-hvdistr1 28437 ax-hvdistr2 28438 ax-hvmul0 28439 ax-hfi 28508 ax-his1 28511 ax-his2 28512 ax-his3 28513 ax-his4 28514 ax-hcompl 28631 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-fal 1615 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4672 df-int 4711 df-iun 4755 df-iin 4756 df-br 4887 df-opab 4949 df-mpt 4966 df-tr 4988 df-id 5261 df-eprel 5266 df-po 5274 df-so 5275 df-fr 5314 df-se 5315 df-we 5316 df-xp 5361 df-rel 5362 df-cnv 5363 df-co 5364 df-dm 5365 df-rn 5366 df-res 5367 df-ima 5368 df-pred 5933 df-ord 5979 df-on 5980 df-lim 5981 df-suc 5982 df-iota 6099 df-fun 6137 df-fn 6138 df-f 6139 df-f1 6140 df-fo 6141 df-f1o 6142 df-fv 6143 df-isom 6144 df-riota 6883 df-ov 6925 df-oprab 6926 df-mpt2 6927 df-of 7174 df-om 7344 df-1st 7445 df-2nd 7446 df-supp 7577 df-wrecs 7689 df-recs 7751 df-rdg 7789 df-1o 7843 df-2o 7844 df-oadd 7847 df-er 8026 df-map 8142 df-pm 8143 df-ixp 8195 df-en 8242 df-dom 8243 df-sdom 8244 df-fin 8245 df-fsupp 8564 df-fi 8605 df-sup 8636 df-inf 8637 df-oi 8704 df-card 9098 df-cda 9325 df-pnf 10413 df-mnf 10414 df-xr 10415 df-ltxr 10416 df-le 10417 df-sub 10608 df-neg 10609 df-div 11033 df-nn 11375 df-2 11438 df-3 11439 df-4 11440 df-5 11441 df-6 11442 df-7 11443 df-8 11444 df-9 11445 df-n0 11643 df-z 11729 df-dec 11846 df-uz 11993 df-q 12096 df-rp 12138 df-xneg 12257 df-xadd 12258 df-xmul 12259 df-ioo 12491 df-icc 12494 df-fz 12644 df-fzo 12785 df-seq 13120 df-exp 13179 df-hash 13436 df-cj 14246 df-re 14247 df-im 14248 df-sqrt 14382 df-abs 14383 df-clim 14627 df-sum 14825 df-struct 16257 df-ndx 16258 df-slot 16259 df-base 16261 df-sets 16262 df-ress 16263 df-plusg 16351 df-mulr 16352 df-starv 16353 df-sca 16354 df-vsca 16355 df-ip 16356 df-tset 16357 df-ple 16358 df-ds 16360 df-unif 16361 df-hom 16362 df-cco 16363 df-rest 16469 df-topn 16470 df-0g 16488 df-gsum 16489 df-topgen 16490 df-pt 16491 df-prds 16494 df-xrs 16548 df-qtop 16553 df-imas 16554 df-xps 16556 df-mre 16632 df-mrc 16633 df-acs 16635 df-mgm 17628 df-sgrp 17670 df-mnd 17681 df-submnd 17722 df-mulg 17928 df-cntz 18133 df-cmn 18581 df-psmet 20134 df-xmet 20135 df-met 20136 df-bl 20137 df-mopn 20138 df-cnfld 20143 df-top 21106 df-topon 21123 df-topsp 21145 df-bases 21158 df-cn 21439 df-cnp 21440 df-lm 21441 df-haus 21527 df-tx 21774 df-hmeo 21967 df-xms 22533 df-ms 22534 df-tms 22535 df-cau 23462 df-grpo 27920 df-gid 27921 df-ginv 27922 df-gdiv 27923 df-ablo 27972 df-vc 27986 df-nv 28019 df-va 28022 df-ba 28023 df-sm 28024 df-0v 28025 df-vs 28026 df-nmcv 28027 df-ims 28028 df-dip 28128 df-hnorm 28397 df-hvsub 28400 df-hlim 28401 df-hcau 28402 df-sh 28636 df-ch 28650 df-oc 28681 df-ch0 28682 df-chj 28741 df-hst 29643 |
This theorem is referenced by: hstle 29661 hstles 29662 |
Copyright terms: Public domain | W3C validator |