HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hst0h Structured version   Visualization version   GIF version

Theorem hst0h 32219
Description: The norm of a Hilbert-space-valued state equals zero iff the state value equals zero. (Contributed by NM, 30-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hst0h ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 0 ↔ (𝑆𝐴) = 0))

Proof of Theorem hst0h
StepHypRef Expression
1 hstcl 32208 . 2 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
2 norm-i 31120 . 2 ((𝑆𝐴) ∈ ℋ → ((norm‘(𝑆𝐴)) = 0 ↔ (𝑆𝐴) = 0))
31, 2syl 17 1 ((𝑆 ∈ CHStates ∧ 𝐴C ) → ((norm‘(𝑆𝐴)) = 0 ↔ (𝑆𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cfv 6489  0cc0 11016  chba 30910  normcno 30914  0c0v 30915   C cch 30920  CHStateschst 30954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073  ax-1cn 11074  ax-icn 11075  ax-addcl 11076  ax-addrcl 11077  ax-mulcl 11078  ax-mulrcl 11079  ax-mulcom 11080  ax-addass 11081  ax-mulass 11082  ax-distr 11083  ax-i2m1 11084  ax-1ne0 11085  ax-1rid 11086  ax-rnegex 11087  ax-rrecex 11088  ax-cnre 11089  ax-pre-lttri 11090  ax-pre-lttrn 11091  ax-pre-ltadd 11092  ax-pre-mulgt0 11093  ax-pre-sup 11094  ax-hilex 30990  ax-hv0cl 30994  ax-hvmul0 31001  ax-hfi 31070  ax-his1 31073  ax-his3 31075  ax-his4 31076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-nel 3035  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-map 8761  df-en 8879  df-dom 8880  df-sdom 8881  df-sup 9336  df-pnf 11158  df-mnf 11159  df-xr 11160  df-ltxr 11161  df-le 11162  df-sub 11356  df-neg 11357  df-div 11785  df-nn 12136  df-2 12198  df-3 12199  df-n0 12392  df-z 12479  df-uz 12743  df-rp 12901  df-seq 13919  df-exp 13979  df-cj 15016  df-re 15017  df-im 15018  df-sqrt 15152  df-hnorm 30959  df-sh 31198  df-ch 31212  df-hst 32203
This theorem is referenced by:  hstoh  32223
  Copyright terms: Public domain W3C validator