Step | Hyp | Ref
| Expression |
1 | | idltrn.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
2 | | idltrn.h |
. . 3
⊢ 𝐻 = (LHyp‘𝐾) |
3 | | eqid 2738 |
. . 3
⊢
((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊) |
4 | 1, 2, 3 | idldil 38055 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ ((LDil‘𝐾)‘𝑊)) |
5 | | simpll 763 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
6 | | simplrr 774 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾)) |
7 | | simprr 769 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊) |
8 | | eqid 2738 |
. . . . . . 7
⊢
(le‘𝐾) =
(le‘𝐾) |
9 | | eqid 2738 |
. . . . . . 7
⊢
(meet‘𝐾) =
(meet‘𝐾) |
10 | | eqid 2738 |
. . . . . . 7
⊢
(0.‘𝐾) =
(0.‘𝐾) |
11 | | eqid 2738 |
. . . . . . 7
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
12 | 8, 9, 10, 11, 2 | lhpmat 37971 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(meet‘𝐾)𝑊) = (0.‘𝐾)) |
13 | 5, 6, 7, 12 | syl12anc 833 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(meet‘𝐾)𝑊) = (0.‘𝐾)) |
14 | 1, 11 | atbase 37230 |
. . . . . . . . 9
⊢ (𝑞 ∈ (Atoms‘𝐾) → 𝑞 ∈ 𝐵) |
15 | | fvresi 7027 |
. . . . . . . . 9
⊢ (𝑞 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑞) = 𝑞) |
16 | 6, 14, 15 | 3syl 18 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑞) = 𝑞) |
17 | 16 | oveq2d 7271 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞)) = (𝑞(join‘𝐾)𝑞)) |
18 | | simplll 771 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐾 ∈ HL) |
19 | | eqid 2738 |
. . . . . . . . 9
⊢
(join‘𝐾) =
(join‘𝐾) |
20 | 19, 11 | hlatjidm 37310 |
. . . . . . . 8
⊢ ((𝐾 ∈ HL ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑞(join‘𝐾)𝑞) = 𝑞) |
21 | 18, 6, 20 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)𝑞) = 𝑞) |
22 | 17, 21 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞)) = 𝑞) |
23 | 22 | oveq1d 7270 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊) = (𝑞(meet‘𝐾)𝑊)) |
24 | | simplrl 773 |
. . . . . . . . . 10
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾)) |
25 | 1, 11 | atbase 37230 |
. . . . . . . . . 10
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ 𝐵) |
26 | | fvresi 7027 |
. . . . . . . . . 10
⊢ (𝑝 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝) |
27 | 24, 25, 26 | 3syl 18 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑝) = 𝑝) |
28 | 27 | oveq2d 7271 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝)) = (𝑝(join‘𝐾)𝑝)) |
29 | 19, 11 | hlatjidm 37310 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝) |
30 | 18, 24, 29 | syl2anc 583 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)𝑝) = 𝑝) |
31 | 28, 30 | eqtrd 2778 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝)) = 𝑝) |
32 | 31 | oveq1d 7270 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = (𝑝(meet‘𝐾)𝑊)) |
33 | | simprl 767 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊) |
34 | 8, 9, 10, 11, 2 | lhpmat 37971 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝(meet‘𝐾)𝑊) = (0.‘𝐾)) |
35 | 5, 24, 33, 34 | syl12anc 833 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(meet‘𝐾)𝑊) = (0.‘𝐾)) |
36 | 32, 35 | eqtrd 2778 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = (0.‘𝐾)) |
37 | 13, 23, 36 | 3eqtr4rd 2789 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊)) |
38 | 37 | ex 412 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊))) |
39 | 38 | ralrimivva 3114 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊))) |
40 | | idltrn.t |
. . 3
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
41 | 8, 19, 9, 11, 2, 3,
40 | isltrn 38060 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (( I ↾ 𝐵) ∈ 𝑇 ↔ (( I ↾ 𝐵) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊))))) |
42 | 4, 39, 41 | mpbir2and 709 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |