Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idltrn Structured version   Visualization version   GIF version

Theorem idltrn 40129
Description: The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idltrn.b 𝐵 = (Base‘𝐾)
idltrn.h 𝐻 = (LHyp‘𝐾)
idltrn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
idltrn ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)

Proof of Theorem idltrn
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idltrn.b . . 3 𝐵 = (Base‘𝐾)
2 idltrn.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2729 . . 3 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
41, 2, 3idldil 40093 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LDil‘𝐾)‘𝑊))
5 simpll 766 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simplrr 777 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾))
7 simprr 772 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊)
8 eqid 2729 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
9 eqid 2729 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
10 eqid 2729 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
11 eqid 2729 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
128, 9, 10, 11, 2lhpmat 40009 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(meet‘𝐾)𝑊) = (0.‘𝐾))
135, 6, 7, 12syl12anc 836 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(meet‘𝐾)𝑊) = (0.‘𝐾))
141, 11atbase 39267 . . . . . . . . 9 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
15 fvresi 7113 . . . . . . . . 9 (𝑞𝐵 → (( I ↾ 𝐵)‘𝑞) = 𝑞)
166, 14, 153syl 18 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑞) = 𝑞)
1716oveq2d 7369 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞)) = (𝑞(join‘𝐾)𝑞))
18 simplll 774 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
19 eqid 2729 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
2019, 11hlatjidm 39347 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑞(join‘𝐾)𝑞) = 𝑞)
2118, 6, 20syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)𝑞) = 𝑞)
2217, 21eqtrd 2764 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞)) = 𝑞)
2322oveq1d 7368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊) = (𝑞(meet‘𝐾)𝑊))
24 simplrl 776 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
251, 11atbase 39267 . . . . . . . . . 10 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
26 fvresi 7113 . . . . . . . . . 10 (𝑝𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝)
2724, 25, 263syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
2827oveq2d 7369 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝)) = (𝑝(join‘𝐾)𝑝))
2919, 11hlatjidm 39347 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
3018, 24, 29syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
3128, 30eqtrd 2764 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝)) = 𝑝)
3231oveq1d 7368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = (𝑝(meet‘𝐾)𝑊))
33 simprl 770 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊)
348, 9, 10, 11, 2lhpmat 40009 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝(meet‘𝐾)𝑊) = (0.‘𝐾))
355, 24, 33, 34syl12anc 836 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(meet‘𝐾)𝑊) = (0.‘𝐾))
3632, 35eqtrd 2764 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = (0.‘𝐾))
3713, 23, 363eqtr4rd 2775 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊))
3837ex 412 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊)))
3938ralrimivva 3172 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊)))
40 idltrn.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
418, 19, 9, 11, 2, 3, 40isltrn 40098 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵) ∈ 𝑇 ↔ (( I ↾ 𝐵) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊)))))
424, 39, 41mpbir2and 713 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5095   I cid 5517  cres 5625  cfv 6486  (class class class)co 7353  Basecbs 17138  lecple 17186  joincjn 18235  meetcmee 18236  0.cp0 18345  Atomscatm 39241  HLchlt 39328  LHypclh 39963  LDilcldil 40079  LTrncltrn 40080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-proset 18218  df-poset 18237  df-plt 18252  df-lub 18268  df-glb 18269  df-join 18270  df-meet 18271  df-p0 18347  df-lat 18356  df-covers 39244  df-ats 39245  df-atl 39276  df-cvlat 39300  df-hlat 39329  df-lhyp 39967  df-laut 39968  df-ldil 40083  df-ltrn 40084
This theorem is referenced by:  trlid0  40155  tgrpgrplem  40728  tendoid  40752  tendo0cl  40769  cdlemkid2  40903  cdlemkid3N  40912  cdlemkid4  40913  cdlemkid5  40914  cdlemk35s-id  40917  dva0g  41006  dian0  41018  dia0  41031  dvhgrp  41086  dvh0g  41090  dvheveccl  41091  dvhopN  41095  dihmeetlem4preN  41285
  Copyright terms: Public domain W3C validator