Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idltrn Structured version   Visualization version   GIF version

Theorem idltrn 38164
Description: The identity function is a lattice translation. Remark below Lemma B in [Crawley] p. 112. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idltrn.b 𝐵 = (Base‘𝐾)
idltrn.h 𝐻 = (LHyp‘𝐾)
idltrn.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
Assertion
Ref Expression
idltrn ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)

Proof of Theorem idltrn
Dummy variables 𝑞 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idltrn.b . . 3 𝐵 = (Base‘𝐾)
2 idltrn.h . . 3 𝐻 = (LHyp‘𝐾)
3 eqid 2738 . . 3 ((LDil‘𝐾)‘𝑊) = ((LDil‘𝐾)‘𝑊)
41, 2, 3idldil 38128 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ ((LDil‘𝐾)‘𝑊))
5 simpll 764 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 simplrr 775 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑞 ∈ (Atoms‘𝐾))
7 simprr 770 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑞(le‘𝐾)𝑊)
8 eqid 2738 . . . . . . 7 (le‘𝐾) = (le‘𝐾)
9 eqid 2738 . . . . . . 7 (meet‘𝐾) = (meet‘𝐾)
10 eqid 2738 . . . . . . 7 (0.‘𝐾) = (0.‘𝐾)
11 eqid 2738 . . . . . . 7 (Atoms‘𝐾) = (Atoms‘𝐾)
128, 9, 10, 11, 2lhpmat 38044 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(meet‘𝐾)𝑊) = (0.‘𝐾))
135, 6, 7, 12syl12anc 834 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(meet‘𝐾)𝑊) = (0.‘𝐾))
141, 11atbase 37303 . . . . . . . . 9 (𝑞 ∈ (Atoms‘𝐾) → 𝑞𝐵)
15 fvresi 7045 . . . . . . . . 9 (𝑞𝐵 → (( I ↾ 𝐵)‘𝑞) = 𝑞)
166, 14, 153syl 18 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑞) = 𝑞)
1716oveq2d 7291 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞)) = (𝑞(join‘𝐾)𝑞))
18 simplll 772 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝐾 ∈ HL)
19 eqid 2738 . . . . . . . . 9 (join‘𝐾) = (join‘𝐾)
2019, 11hlatjidm 37383 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑞 ∈ (Atoms‘𝐾)) → (𝑞(join‘𝐾)𝑞) = 𝑞)
2118, 6, 20syl2anc 584 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)𝑞) = 𝑞)
2217, 21eqtrd 2778 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞)) = 𝑞)
2322oveq1d 7290 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊) = (𝑞(meet‘𝐾)𝑊))
24 simplrl 774 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → 𝑝 ∈ (Atoms‘𝐾))
251, 11atbase 37303 . . . . . . . . . 10 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
26 fvresi 7045 . . . . . . . . . 10 (𝑝𝐵 → (( I ↾ 𝐵)‘𝑝) = 𝑝)
2724, 25, 263syl 18 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (( I ↾ 𝐵)‘𝑝) = 𝑝)
2827oveq2d 7291 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝)) = (𝑝(join‘𝐾)𝑝))
2919, 11hlatjidm 37383 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
3018, 24, 29syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)𝑝) = 𝑝)
3128, 30eqtrd 2778 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝)) = 𝑝)
3231oveq1d 7290 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = (𝑝(meet‘𝐾)𝑊))
33 simprl 768 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ¬ 𝑝(le‘𝐾)𝑊)
348, 9, 10, 11, 2lhpmat 38044 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ ¬ 𝑝(le‘𝐾)𝑊)) → (𝑝(meet‘𝐾)𝑊) = (0.‘𝐾))
355, 24, 33, 34syl12anc 834 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → (𝑝(meet‘𝐾)𝑊) = (0.‘𝐾))
3632, 35eqtrd 2778 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = (0.‘𝐾))
3713, 23, 363eqtr4rd 2789 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) ∧ (¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊)) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊))
3837ex 413 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑝 ∈ (Atoms‘𝐾) ∧ 𝑞 ∈ (Atoms‘𝐾))) → ((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊)))
3938ralrimivva 3123 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊)))
40 idltrn.t . . 3 𝑇 = ((LTrn‘𝐾)‘𝑊)
418, 19, 9, 11, 2, 3, 40isltrn 38133 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (( I ↾ 𝐵) ∈ 𝑇 ↔ (( I ↾ 𝐵) ∈ ((LDil‘𝐾)‘𝑊) ∧ ∀𝑝 ∈ (Atoms‘𝐾)∀𝑞 ∈ (Atoms‘𝐾)((¬ 𝑝(le‘𝐾)𝑊 ∧ ¬ 𝑞(le‘𝐾)𝑊) → ((𝑝(join‘𝐾)(( I ↾ 𝐵)‘𝑝))(meet‘𝐾)𝑊) = ((𝑞(join‘𝐾)(( I ↾ 𝐵)‘𝑞))(meet‘𝐾)𝑊)))))
424, 39, 41mpbir2and 710 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064   class class class wbr 5074   I cid 5488  cres 5591  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  0.cp0 18141  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LDilcldil 38114  LTrncltrn 38115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119
This theorem is referenced by:  trlid0  38190  tgrpgrplem  38763  tendoid  38787  tendo0cl  38804  cdlemkid2  38938  cdlemkid3N  38947  cdlemkid4  38948  cdlemkid5  38949  cdlemk35s-id  38952  dva0g  39041  dian0  39053  dia0  39066  dvhgrp  39121  dvh0g  39125  dvheveccl  39126  dvhopN  39130  dihmeetlem4preN  39320
  Copyright terms: Public domain W3C validator