![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlaut | Structured version Visualization version GIF version |
Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
idlaut.b | ⊢ 𝐵 = (Base‘𝐾) |
idlaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
idlaut | ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6900 | . . 3 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵):𝐵–1-1-onto→𝐵) |
3 | fvresi 7207 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) | |
4 | fvresi 7207 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
5 | 3, 4 | breqan12d 5182 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦) ↔ 𝑥(le‘𝐾)𝑦)) |
6 | 5 | bicomd 223 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
7 | 6 | rgen2 3205 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)) |
8 | 7 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
9 | idlaut.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
10 | eqid 2740 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | idlaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
12 | 9, 10, 11 | islaut 40040 | . 2 ⊢ (𝐾 ∈ 𝐴 → (( I ↾ 𝐵) ∈ 𝐼 ↔ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))))) |
13 | 2, 8, 12 | mpbir2and 712 | 1 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 class class class wbr 5166 I cid 5592 ↾ cres 5702 –1-1-onto→wf1o 6572 ‘cfv 6573 Basecbs 17258 lecple 17318 LAutclaut 39942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-laut 39946 |
This theorem is referenced by: idldil 40071 |
Copyright terms: Public domain | W3C validator |