![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlaut | Structured version Visualization version GIF version |
Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.) |
Ref | Expression |
---|---|
idlaut.b | ⊢ 𝐵 = (Base‘𝐾) |
idlaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
Ref | Expression |
---|---|
idlaut | ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1oi 6475 | . . 3 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵):𝐵–1-1-onto→𝐵) |
3 | fvresi 6752 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) | |
4 | fvresi 6752 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
5 | 3, 4 | breqan12d 4939 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦) ↔ 𝑥(le‘𝐾)𝑦)) |
6 | 5 | bicomd 215 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
7 | 6 | rgen2a 3170 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)) |
8 | 7 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
9 | idlaut.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
10 | eqid 2772 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
11 | idlaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
12 | 9, 10, 11 | islaut 36612 | . 2 ⊢ (𝐾 ∈ 𝐴 → (( I ↾ 𝐵) ∈ 𝐼 ↔ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))))) |
13 | 2, 8, 12 | mpbir2and 700 | 1 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1507 ∈ wcel 2048 ∀wral 3082 class class class wbr 4923 I cid 5304 ↾ cres 5402 –1-1-onto→wf1o 6181 ‘cfv 6182 Basecbs 16329 lecple 16418 LAutclaut 36514 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-map 8200 df-laut 36518 |
This theorem is referenced by: idldil 36643 |
Copyright terms: Public domain | W3C validator |