| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlaut | Structured version Visualization version GIF version | ||
| Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.) |
| Ref | Expression |
|---|---|
| idlaut.b | ⊢ 𝐵 = (Base‘𝐾) |
| idlaut.i | ⊢ 𝐼 = (LAut‘𝐾) |
| Ref | Expression |
|---|---|
| idlaut | ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6806 | . . 3 ⊢ ( I ↾ 𝐵):𝐵–1-1-onto→𝐵 | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵):𝐵–1-1-onto→𝐵) |
| 3 | fvresi 7113 | . . . . . 6 ⊢ (𝑥 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥) | |
| 4 | fvresi 7113 | . . . . . 6 ⊢ (𝑦 ∈ 𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦) | |
| 5 | 3, 4 | breqan12d 5109 | . . . . 5 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → ((( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦) ↔ 𝑥(le‘𝐾)𝑦)) |
| 6 | 5 | bicomd 223 | . . . 4 ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
| 7 | 6 | rgen2 3173 | . . 3 ⊢ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)) |
| 8 | 7 | a1i 11 | . 2 ⊢ (𝐾 ∈ 𝐴 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))) |
| 9 | idlaut.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 10 | eqid 2733 | . . 3 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 11 | idlaut.i | . . 3 ⊢ 𝐼 = (LAut‘𝐾) | |
| 12 | 9, 10, 11 | islaut 40202 | . 2 ⊢ (𝐾 ∈ 𝐴 → (( I ↾ 𝐵) ∈ 𝐼 ↔ (( I ↾ 𝐵):𝐵–1-1-onto→𝐵 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))))) |
| 13 | 2, 8, 12 | mpbir2and 713 | 1 ⊢ (𝐾 ∈ 𝐴 → ( I ↾ 𝐵) ∈ 𝐼) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 I cid 5513 ↾ cres 5621 –1-1-onto→wf1o 6485 ‘cfv 6486 Basecbs 17122 lecple 17170 LAutclaut 40104 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-map 8758 df-laut 40108 |
| This theorem is referenced by: idldil 40233 |
| Copyright terms: Public domain | W3C validator |