Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlaut Structured version   Visualization version   GIF version

Theorem idlaut 40090
Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idlaut.b 𝐵 = (Base‘𝐾)
idlaut.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
idlaut (𝐾𝐴 → ( I ↾ 𝐵) ∈ 𝐼)

Proof of Theorem idlaut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6838 . . 3 ( I ↾ 𝐵):𝐵1-1-onto𝐵
21a1i 11 . 2 (𝐾𝐴 → ( I ↾ 𝐵):𝐵1-1-onto𝐵)
3 fvresi 7147 . . . . . 6 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
4 fvresi 7147 . . . . . 6 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
53, 4breqan12d 5123 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦) ↔ 𝑥(le‘𝐾)𝑦))
65bicomd 223 . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))
76rgen2 3177 . . 3 𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))
87a1i 11 . 2 (𝐾𝐴 → ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))
9 idlaut.b . . 3 𝐵 = (Base‘𝐾)
10 eqid 2729 . . 3 (le‘𝐾) = (le‘𝐾)
11 idlaut.i . . 3 𝐼 = (LAut‘𝐾)
129, 10, 11islaut 40077 . 2 (𝐾𝐴 → (( I ↾ 𝐵) ∈ 𝐼 ↔ (( I ↾ 𝐵):𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))))
132, 8, 12mpbir2and 713 1 (𝐾𝐴 → ( I ↾ 𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044   class class class wbr 5107   I cid 5532  cres 5640  1-1-ontowf1o 6510  cfv 6511  Basecbs 17179  lecple 17227  LAutclaut 39979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-map 8801  df-laut 39983
This theorem is referenced by:  idldil  40108
  Copyright terms: Public domain W3C validator