Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlaut Structured version   Visualization version   GIF version

Theorem idlaut 40134
Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idlaut.b 𝐵 = (Base‘𝐾)
idlaut.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
idlaut (𝐾𝐴 → ( I ↾ 𝐵) ∈ 𝐼)

Proof of Theorem idlaut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6801 . . 3 ( I ↾ 𝐵):𝐵1-1-onto𝐵
21a1i 11 . 2 (𝐾𝐴 → ( I ↾ 𝐵):𝐵1-1-onto𝐵)
3 fvresi 7107 . . . . . 6 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
4 fvresi 7107 . . . . . 6 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
53, 4breqan12d 5107 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦) ↔ 𝑥(le‘𝐾)𝑦))
65bicomd 223 . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))
76rgen2 3172 . . 3 𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))
87a1i 11 . 2 (𝐾𝐴 → ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))
9 idlaut.b . . 3 𝐵 = (Base‘𝐾)
10 eqid 2731 . . 3 (le‘𝐾) = (le‘𝐾)
11 idlaut.i . . 3 𝐼 = (LAut‘𝐾)
129, 10, 11islaut 40121 . 2 (𝐾𝐴 → (( I ↾ 𝐵) ∈ 𝐼 ↔ (( I ↾ 𝐵):𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))))
132, 8, 12mpbir2and 713 1 (𝐾𝐴 → ( I ↾ 𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wral 3047   class class class wbr 5091   I cid 5510  cres 5618  1-1-ontowf1o 6480  cfv 6481  Basecbs 17117  lecple 17165  LAutclaut 40023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-map 8752  df-laut 40027
This theorem is referenced by:  idldil  40152
  Copyright terms: Public domain W3C validator