Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlaut Structured version   Visualization version   GIF version

Theorem idlaut 37226
Description: The identity function is a lattice automorphism. (Contributed by NM, 18-May-2012.)
Hypotheses
Ref Expression
idlaut.b 𝐵 = (Base‘𝐾)
idlaut.i 𝐼 = (LAut‘𝐾)
Assertion
Ref Expression
idlaut (𝐾𝐴 → ( I ↾ 𝐵) ∈ 𝐼)

Proof of Theorem idlaut
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1oi 6647 . . 3 ( I ↾ 𝐵):𝐵1-1-onto𝐵
21a1i 11 . 2 (𝐾𝐴 → ( I ↾ 𝐵):𝐵1-1-onto𝐵)
3 fvresi 6930 . . . . . 6 (𝑥𝐵 → (( I ↾ 𝐵)‘𝑥) = 𝑥)
4 fvresi 6930 . . . . . 6 (𝑦𝐵 → (( I ↾ 𝐵)‘𝑦) = 𝑦)
53, 4breqan12d 5075 . . . . 5 ((𝑥𝐵𝑦𝐵) → ((( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦) ↔ 𝑥(le‘𝐾)𝑦))
65bicomd 225 . . . 4 ((𝑥𝐵𝑦𝐵) → (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))
76rgen2 3203 . . 3 𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦))
87a1i 11 . 2 (𝐾𝐴 → ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))
9 idlaut.b . . 3 𝐵 = (Base‘𝐾)
10 eqid 2821 . . 3 (le‘𝐾) = (le‘𝐾)
11 idlaut.i . . 3 𝐼 = (LAut‘𝐾)
129, 10, 11islaut 37213 . 2 (𝐾𝐴 → (( I ↾ 𝐵) ∈ 𝐼 ↔ (( I ↾ 𝐵):𝐵1-1-onto𝐵 ∧ ∀𝑥𝐵𝑦𝐵 (𝑥(le‘𝐾)𝑦 ↔ (( I ↾ 𝐵)‘𝑥)(le‘𝐾)(( I ↾ 𝐵)‘𝑦)))))
132, 8, 12mpbir2and 711 1 (𝐾𝐴 → ( I ↾ 𝐵) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wral 3138   class class class wbr 5059   I cid 5454  cres 5552  1-1-ontowf1o 6349  cfv 6350  Basecbs 16477  lecple 16566  LAutclaut 37115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8402  df-laut 37119
This theorem is referenced by:  idldil  37244
  Copyright terms: Public domain W3C validator