| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifle | Structured version Visualization version GIF version | ||
| Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.) |
| Ref | Expression |
|---|---|
| ifle | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll1 1213 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝐴 ∈ ℝ) | |
| 2 | 1 | leidd 11751 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝐴 ≤ 𝐴) |
| 3 | iftrue 4497 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
| 4 | 3 | adantl 481 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) |
| 5 | id 22 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 6 | 5 | imp 406 | . . . . 5 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜓) |
| 7 | 6 | adantll 714 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝜓) |
| 8 | 7 | iftrued 4499 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
| 9 | 2, 4, 8 | 3brtr4d 5142 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
| 10 | iffalse 4500 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
| 11 | 10 | adantl 481 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) |
| 12 | simpll3 1215 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ 𝐴) | |
| 13 | simpll2 1214 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ∈ ℝ) | |
| 14 | 13 | leidd 11751 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ 𝐵) |
| 15 | breq2 5114 | . . . . 5 ⊢ (𝐴 = if(𝜓, 𝐴, 𝐵) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ if(𝜓, 𝐴, 𝐵))) | |
| 16 | breq2 5114 | . . . . 5 ⊢ (𝐵 = if(𝜓, 𝐴, 𝐵) → (𝐵 ≤ 𝐵 ↔ 𝐵 ≤ if(𝜓, 𝐴, 𝐵))) | |
| 17 | 15, 16 | ifboth 4531 | . . . 4 ⊢ ((𝐵 ≤ 𝐴 ∧ 𝐵 ≤ 𝐵) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵)) |
| 18 | 12, 14, 17 | syl2anc 584 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵)) |
| 19 | 11, 18 | eqbrtrd 5132 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
| 20 | 9, 19 | pm2.61dan 812 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4491 class class class wbr 5110 ℝcr 11074 ≤ cle 11216 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-pre-lttri 11149 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 |
| This theorem is referenced by: rpnnen2lem4 16192 itg2cnlem2 25670 |
| Copyright terms: Public domain | W3C validator |