MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifle Structured version   Visualization version   GIF version

Theorem ifle 13216
Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.)
Assertion
Ref Expression
ifle (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifle
StepHypRef Expression
1 simpll1 1209 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝐴 ∈ ℝ)
21leidd 11818 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝐴𝐴)
3 iftrue 4538 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
43adantl 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴)
5 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
65imp 405 . . . . 5 (((𝜑𝜓) ∧ 𝜑) → 𝜓)
76adantll 712 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝜓)
87iftrued 4540 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜓, 𝐴, 𝐵) = 𝐴)
92, 4, 83brtr4d 5184 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
10 iffalse 4541 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
1110adantl 480 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵)
12 simpll3 1211 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵𝐴)
13 simpll2 1210 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵 ∈ ℝ)
1413leidd 11818 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵𝐵)
15 breq2 5156 . . . . 5 (𝐴 = if(𝜓, 𝐴, 𝐵) → (𝐵𝐴𝐵 ≤ if(𝜓, 𝐴, 𝐵)))
16 breq2 5156 . . . . 5 (𝐵 = if(𝜓, 𝐴, 𝐵) → (𝐵𝐵𝐵 ≤ if(𝜓, 𝐴, 𝐵)))
1715, 16ifboth 4571 . . . 4 ((𝐵𝐴𝐵𝐵) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵))
1812, 14, 17syl2anc 582 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵))
1911, 18eqbrtrd 5174 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
209, 19pm2.61dan 811 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  ifcif 4532   class class class wbr 5152  cr 11145  cle 11287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-resscn 11203  ax-pre-lttri 11220
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292
This theorem is referenced by:  rpnnen2lem4  16201  itg2cnlem2  25712
  Copyright terms: Public domain W3C validator