MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifle Structured version   Visualization version   GIF version

Theorem ifle 12578
Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.)
Assertion
Ref Expression
ifle (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifle
StepHypRef Expression
1 simpll1 1209 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝐴 ∈ ℝ)
21leidd 11195 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝐴𝐴)
3 iftrue 4431 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
43adantl 485 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴)
5 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
65imp 410 . . . . 5 (((𝜑𝜓) ∧ 𝜑) → 𝜓)
76adantll 713 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝜓)
87iftrued 4433 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜓, 𝐴, 𝐵) = 𝐴)
92, 4, 83brtr4d 5062 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
10 iffalse 4434 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
1110adantl 485 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵)
12 simpll3 1211 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵𝐴)
13 simpll2 1210 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵 ∈ ℝ)
1413leidd 11195 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵𝐵)
15 breq2 5034 . . . . 5 (𝐴 = if(𝜓, 𝐴, 𝐵) → (𝐵𝐴𝐵 ≤ if(𝜓, 𝐴, 𝐵)))
16 breq2 5034 . . . . 5 (𝐵 = if(𝜓, 𝐴, 𝐵) → (𝐵𝐵𝐵 ≤ if(𝜓, 𝐴, 𝐵)))
1715, 16ifboth 4463 . . . 4 ((𝐵𝐴𝐵𝐵) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵))
1812, 14, 17syl2anc 587 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵))
1911, 18eqbrtrd 5052 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
209, 19pm2.61dan 812 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  ifcif 4425   class class class wbr 5030  cr 10525  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-pre-lttri 10600
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670
This theorem is referenced by:  rpnnen2lem4  15562  itg2cnlem2  24366
  Copyright terms: Public domain W3C validator