![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifle | Structured version Visualization version GIF version |
Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.) |
Ref | Expression |
---|---|
ifle | ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll1 1213 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝐴 ∈ ℝ) | |
2 | 1 | leidd 11722 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝐴 ≤ 𝐴) |
3 | iftrue 4493 | . . . 4 ⊢ (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴) | |
4 | 3 | adantl 483 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴) |
5 | id 22 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
6 | 5 | imp 408 | . . . . 5 ⊢ (((𝜑 → 𝜓) ∧ 𝜑) → 𝜓) |
7 | 6 | adantll 713 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → 𝜓) |
8 | 7 | iftrued 4495 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜓, 𝐴, 𝐵) = 𝐴) |
9 | 2, 4, 8 | 3brtr4d 5138 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
10 | iffalse 4496 | . . . 4 ⊢ (¬ 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵) | |
11 | 10 | adantl 483 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵) |
12 | simpll3 1215 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ 𝐴) | |
13 | simpll2 1214 | . . . . 5 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ∈ ℝ) | |
14 | 13 | leidd 11722 | . . . 4 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ 𝐵) |
15 | breq2 5110 | . . . . 5 ⊢ (𝐴 = if(𝜓, 𝐴, 𝐵) → (𝐵 ≤ 𝐴 ↔ 𝐵 ≤ if(𝜓, 𝐴, 𝐵))) | |
16 | breq2 5110 | . . . . 5 ⊢ (𝐵 = if(𝜓, 𝐴, 𝐵) → (𝐵 ≤ 𝐵 ↔ 𝐵 ≤ if(𝜓, 𝐴, 𝐵))) | |
17 | 15, 16 | ifboth 4526 | . . . 4 ⊢ ((𝐵 ≤ 𝐴 ∧ 𝐵 ≤ 𝐵) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵)) |
18 | 12, 14, 17 | syl2anc 585 | . . 3 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵)) |
19 | 11, 18 | eqbrtrd 5128 | . 2 ⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
20 | 9, 19 | pm2.61dan 812 | 1 ⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≤ 𝐴) ∧ (𝜑 → 𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ifcif 4487 class class class wbr 5106 ℝcr 11051 ≤ cle 11191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-resscn 11109 ax-pre-lttri 11126 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-er 8649 df-en 8885 df-dom 8886 df-sdom 8887 df-pnf 11192 df-mnf 11193 df-xr 11194 df-ltxr 11195 df-le 11196 |
This theorem is referenced by: rpnnen2lem4 16100 itg2cnlem2 25130 |
Copyright terms: Public domain | W3C validator |