MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifle Structured version   Visualization version   GIF version

Theorem ifle 13259
Description: An if statement transforms an implication into an inequality of terms. (Contributed by Mario Carneiro, 31-Aug-2014.)
Assertion
Ref Expression
ifle (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))

Proof of Theorem ifle
StepHypRef Expression
1 simpll1 1212 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝐴 ∈ ℝ)
21leidd 11856 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝐴𝐴)
3 iftrue 4554 . . . 4 (𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐴)
43adantl 481 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐴)
5 id 22 . . . . . 6 ((𝜑𝜓) → (𝜑𝜓))
65imp 406 . . . . 5 (((𝜑𝜓) ∧ 𝜑) → 𝜓)
76adantll 713 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → 𝜓)
87iftrued 4556 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜓, 𝐴, 𝐵) = 𝐴)
92, 4, 83brtr4d 5198 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
10 iffalse 4557 . . . 4 𝜑 → if(𝜑, 𝐴, 𝐵) = 𝐵)
1110adantl 481 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) = 𝐵)
12 simpll3 1214 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵𝐴)
13 simpll2 1213 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵 ∈ ℝ)
1413leidd 11856 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵𝐵)
15 breq2 5170 . . . . 5 (𝐴 = if(𝜓, 𝐴, 𝐵) → (𝐵𝐴𝐵 ≤ if(𝜓, 𝐴, 𝐵)))
16 breq2 5170 . . . . 5 (𝐵 = if(𝜓, 𝐴, 𝐵) → (𝐵𝐵𝐵 ≤ if(𝜓, 𝐴, 𝐵)))
1715, 16ifboth 4587 . . . 4 ((𝐵𝐴𝐵𝐵) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵))
1812, 14, 17syl2anc 583 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → 𝐵 ≤ if(𝜓, 𝐴, 𝐵))
1911, 18eqbrtrd 5188 . 2 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) ∧ ¬ 𝜑) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
209, 19pm2.61dan 812 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵𝐴) ∧ (𝜑𝜓)) → if(𝜑, 𝐴, 𝐵) ≤ if(𝜓, 𝐴, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  ifcif 4548   class class class wbr 5166  cr 11183  cle 11325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-resscn 11241  ax-pre-lttri 11258
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330
This theorem is referenced by:  rpnnen2lem4  16265  itg2cnlem2  25817
  Copyright terms: Public domain W3C validator