MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem4 Structured version   Visualization version   GIF version

Theorem rpnnen2lem4 16126
Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem4
StepHypRef Expression
1 nnnn0 12388 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 0re 11114 . . . . . . 7 0 ∈ ℝ
3 1re 11112 . . . . . . . 8 1 ∈ ℝ
4 3nn 12204 . . . . . . . 8 3 ∈ ℕ
5 nndivre 12166 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
63, 4, 5mp2an 692 . . . . . . 7 (1 / 3) ∈ ℝ
7 3re 12205 . . . . . . . 8 3 ∈ ℝ
8 3pos 12230 . . . . . . . 8 0 < 3
97, 8recgt0ii 12028 . . . . . . 7 0 < (1 / 3)
102, 6, 9ltleii 11236 . . . . . 6 0 ≤ (1 / 3)
11 expge0 14005 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
126, 11mp3an1 1450 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
131, 10, 12sylancl 586 . . . . 5 (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘))
14133ad2ant3 1135 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘))
15 0le0 12226 . . . 4 0 ≤ 0
16 breq2 5093 . . . . 5 (((1 / 3)↑𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
17 breq2 5093 . . . . 5 (0 = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
1816, 17ifboth 4512 . . . 4 ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
1914, 15, 18sylancl 586 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
20 sstr 3938 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
21 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2221rpnnen2lem1 16123 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2320, 22stoic3 1777 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2419, 23breqtrrd 5117 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝐴)‘𝑘))
25 reexpcl 13985 . . . . . 6 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ)
266, 1, 25sylancr 587 . . . . 5 (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ)
27263ad2ant3 1135 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ)
28 0red 11115 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
29 simp1 1136 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴𝐵)
3029sseld 3928 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝐴𝑘𝐵))
31 ifle 13096 . . . 4 (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘𝐴𝑘𝐵)) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3227, 28, 14, 30, 31syl31anc 1375 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3321rpnnen2lem1 16123 . . . 4 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
34333adant1 1130 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3532, 23, 343brtr4d 5121 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
3624, 35jca 511 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wss 3897  ifcif 4472  𝒫 cpw 4547   class class class wbr 5089  cmpt 5170  cfv 6481  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007  cle 11147   / cdiv 11774  cn 12125  3c3 12181  0cn0 12381  cexp 13968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-seq 13909  df-exp 13969
This theorem is referenced by:  rpnnen2lem5  16127  rpnnen2lem7  16129  rpnnen2lem12  16134
  Copyright terms: Public domain W3C validator