MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem4 Structured version   Visualization version   GIF version

Theorem rpnnen2lem4 16099
Description: Lemma for rpnnen2 16108. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem4
StepHypRef Expression
1 nnnn0 12420 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 0re 11157 . . . . . . 7 0 ∈ ℝ
3 1re 11155 . . . . . . . 8 1 ∈ ℝ
4 3nn 12232 . . . . . . . 8 3 ∈ ℕ
5 nndivre 12194 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
63, 4, 5mp2an 690 . . . . . . 7 (1 / 3) ∈ ℝ
7 3re 12233 . . . . . . . 8 3 ∈ ℝ
8 3pos 12258 . . . . . . . 8 0 < 3
97, 8recgt0ii 12061 . . . . . . 7 0 < (1 / 3)
102, 6, 9ltleii 11278 . . . . . 6 0 ≤ (1 / 3)
11 expge0 14004 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
126, 11mp3an1 1448 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
131, 10, 12sylancl 586 . . . . 5 (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘))
14133ad2ant3 1135 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘))
15 0le0 12254 . . . 4 0 ≤ 0
16 breq2 5109 . . . . 5 (((1 / 3)↑𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
17 breq2 5109 . . . . 5 (0 = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
1816, 17ifboth 4525 . . . 4 ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
1914, 15, 18sylancl 586 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
20 sstr 3952 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
21 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2221rpnnen2lem1 16096 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2320, 22stoic3 1778 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2419, 23breqtrrd 5133 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝐴)‘𝑘))
25 reexpcl 13984 . . . . . 6 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ)
266, 1, 25sylancr 587 . . . . 5 (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ)
27263ad2ant3 1135 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ)
28 0red 11158 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
29 simp1 1136 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴𝐵)
3029sseld 3943 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝐴𝑘𝐵))
31 ifle 13116 . . . 4 (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘𝐴𝑘𝐵)) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3227, 28, 14, 30, 31syl31anc 1373 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3321rpnnen2lem1 16096 . . . 4 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
34333adant1 1130 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3532, 23, 343brtr4d 5137 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
3624, 35jca 512 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wss 3910  ifcif 4486  𝒫 cpw 4560   class class class wbr 5105  cmpt 5188  cfv 6496  (class class class)co 7357  cr 11050  0cc0 11051  1c1 11052  cle 11190   / cdiv 11812  cn 12153  3c3 12209  0cn0 12413  cexp 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-seq 13907  df-exp 13968
This theorem is referenced by:  rpnnen2lem5  16100  rpnnen2lem7  16102  rpnnen2lem12  16107
  Copyright terms: Public domain W3C validator