![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem4 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 16151. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem4 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12461 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
2 | 0re 11198 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
3 | 1re 11196 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
4 | 3nn 12273 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
5 | nndivre 12235 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 690 | . . . . . . 7 ⊢ (1 / 3) ∈ ℝ |
7 | 3re 12274 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
8 | 3pos 12299 | . . . . . . . 8 ⊢ 0 < 3 | |
9 | 7, 8 | recgt0ii 12102 | . . . . . . 7 ⊢ 0 < (1 / 3) |
10 | 2, 6, 9 | ltleii 11319 | . . . . . 6 ⊢ 0 ≤ (1 / 3) |
11 | expge0 14046 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘)) | |
12 | 6, 11 | mp3an1 1448 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘)) |
13 | 1, 10, 12 | sylancl 586 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘)) |
14 | 13 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘)) |
15 | 0le0 12295 | . . . 4 ⊢ 0 ≤ 0 | |
16 | breq2 5145 | . . . . 5 ⊢ (((1 / 3)↑𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0))) | |
17 | breq2 5145 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0))) | |
18 | 16, 17 | ifboth 4561 | . . . 4 ⊢ ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
19 | 14, 15, 18 | sylancl 586 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
20 | sstr 3986 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ) | |
21 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
22 | 21 | rpnnen2lem1 16139 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
23 | 20, 22 | stoic3 1778 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
24 | 19, 23 | breqtrrd 5169 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝐴)‘𝑘)) |
25 | reexpcl 14026 | . . . . . 6 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ) | |
26 | 6, 1, 25 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ) |
27 | 26 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ) |
28 | 0red 11199 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ) | |
29 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴 ⊆ 𝐵) | |
30 | 29 | sseld 3977 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵)) |
31 | ifle 13158 | . . . 4 ⊢ (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵)) → if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) | |
32 | 27, 28, 14, 30, 31 | syl31anc 1373 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
33 | 21 | rpnnen2lem1 16139 | . . . 4 ⊢ ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
34 | 33 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
35 | 32, 23, 34 | 3brtr4d 5173 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
36 | 24, 35 | jca 512 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ⊆ wss 3944 ifcif 4522 𝒫 cpw 4596 class class class wbr 5141 ↦ cmpt 5224 ‘cfv 6532 (class class class)co 7393 ℝcr 11091 0cc0 11092 1c1 11093 ≤ cle 11231 / cdiv 11853 ℕcn 12194 3c3 12250 ℕ0cn0 12454 ↑cexp 14009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-om 7839 df-2nd 7958 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-er 8686 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-div 11854 df-nn 12195 df-2 12257 df-3 12258 df-n0 12455 df-z 12541 df-uz 12805 df-seq 13949 df-exp 14010 |
This theorem is referenced by: rpnnen2lem5 16143 rpnnen2lem7 16145 rpnnen2lem12 16150 |
Copyright terms: Public domain | W3C validator |