MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem4 Structured version   Visualization version   GIF version

Theorem rpnnen2lem4 15570
Description: Lemma for rpnnen2 15579. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem4
StepHypRef Expression
1 nnnn0 11905 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 0re 10643 . . . . . . 7 0 ∈ ℝ
3 1re 10641 . . . . . . . 8 1 ∈ ℝ
4 3nn 11717 . . . . . . . 8 3 ∈ ℕ
5 nndivre 11679 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
63, 4, 5mp2an 690 . . . . . . 7 (1 / 3) ∈ ℝ
7 3re 11718 . . . . . . . 8 3 ∈ ℝ
8 3pos 11743 . . . . . . . 8 0 < 3
97, 8recgt0ii 11546 . . . . . . 7 0 < (1 / 3)
102, 6, 9ltleii 10763 . . . . . 6 0 ≤ (1 / 3)
11 expge0 13466 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
126, 11mp3an1 1444 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
131, 10, 12sylancl 588 . . . . 5 (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘))
14133ad2ant3 1131 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘))
15 0le0 11739 . . . 4 0 ≤ 0
16 breq2 5070 . . . . 5 (((1 / 3)↑𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
17 breq2 5070 . . . . 5 (0 = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
1816, 17ifboth 4505 . . . 4 ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
1914, 15, 18sylancl 588 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
20 sstr 3975 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
21 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2221rpnnen2lem1 15567 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2320, 22stoic3 1777 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2419, 23breqtrrd 5094 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝐴)‘𝑘))
25 reexpcl 13447 . . . . . 6 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ)
266, 1, 25sylancr 589 . . . . 5 (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ)
27263ad2ant3 1131 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ)
28 0red 10644 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
29 simp1 1132 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴𝐵)
3029sseld 3966 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝐴𝑘𝐵))
31 ifle 12591 . . . 4 (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘𝐴𝑘𝐵)) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3227, 28, 14, 30, 31syl31anc 1369 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3321rpnnen2lem1 15567 . . . 4 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
34333adant1 1126 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3532, 23, 343brtr4d 5098 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
3624, 35jca 514 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wss 3936  ifcif 4467  𝒫 cpw 4539   class class class wbr 5066  cmpt 5146  cfv 6355  (class class class)co 7156  cr 10536  0cc0 10537  1c1 10538  cle 10676   / cdiv 11297  cn 11638  3c3 11694  0cn0 11898  cexp 13430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-n0 11899  df-z 11983  df-uz 12245  df-seq 13371  df-exp 13431
This theorem is referenced by:  rpnnen2lem5  15571  rpnnen2lem7  15573  rpnnen2lem12  15578
  Copyright terms: Public domain W3C validator