MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem4 Structured version   Visualization version   GIF version

Theorem rpnnen2lem4 16249
Description: Lemma for rpnnen2 16258. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem4
StepHypRef Expression
1 nnnn0 12530 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 0re 11260 . . . . . . 7 0 ∈ ℝ
3 1re 11258 . . . . . . . 8 1 ∈ ℝ
4 3nn 12342 . . . . . . . 8 3 ∈ ℕ
5 nndivre 12304 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
63, 4, 5mp2an 692 . . . . . . 7 (1 / 3) ∈ ℝ
7 3re 12343 . . . . . . . 8 3 ∈ ℝ
8 3pos 12368 . . . . . . . 8 0 < 3
97, 8recgt0ii 12171 . . . . . . 7 0 < (1 / 3)
102, 6, 9ltleii 11381 . . . . . 6 0 ≤ (1 / 3)
11 expge0 14135 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
126, 11mp3an1 1447 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
131, 10, 12sylancl 586 . . . . 5 (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘))
14133ad2ant3 1134 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘))
15 0le0 12364 . . . 4 0 ≤ 0
16 breq2 5151 . . . . 5 (((1 / 3)↑𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
17 breq2 5151 . . . . 5 (0 = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
1816, 17ifboth 4569 . . . 4 ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
1914, 15, 18sylancl 586 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
20 sstr 4003 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
21 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2221rpnnen2lem1 16246 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2320, 22stoic3 1772 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2419, 23breqtrrd 5175 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝐴)‘𝑘))
25 reexpcl 14115 . . . . . 6 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ)
266, 1, 25sylancr 587 . . . . 5 (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ)
27263ad2ant3 1134 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ)
28 0red 11261 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
29 simp1 1135 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴𝐵)
3029sseld 3993 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝐴𝑘𝐵))
31 ifle 13235 . . . 4 (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘𝐴𝑘𝐵)) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3227, 28, 14, 30, 31syl31anc 1372 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3321rpnnen2lem1 16246 . . . 4 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
34333adant1 1129 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3532, 23, 343brtr4d 5179 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
3624, 35jca 511 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1536  wcel 2105  wss 3962  ifcif 4530  𝒫 cpw 4604   class class class wbr 5147  cmpt 5230  cfv 6562  (class class class)co 7430  cr 11151  0cc0 11152  1c1 11153  cle 11293   / cdiv 11917  cn 12263  3c3 12319  0cn0 12523  cexp 14098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-seq 14039  df-exp 14099
This theorem is referenced by:  rpnnen2lem5  16250  rpnnen2lem7  16252  rpnnen2lem12  16257
  Copyright terms: Public domain W3C validator