MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem4 Structured version   Visualization version   GIF version

Theorem rpnnen2lem4 15854
Description: Lemma for rpnnen2 15863. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.)
Hypothesis
Ref Expression
rpnnen2.1 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
Assertion
Ref Expression
rpnnen2lem4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Distinct variable groups:   𝑥,𝑛,𝑘,𝐴   𝐵,𝑘,𝑛,𝑥   𝑘,𝐹
Allowed substitution hints:   𝐹(𝑥,𝑛)

Proof of Theorem rpnnen2lem4
StepHypRef Expression
1 nnnn0 12170 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
2 0re 10908 . . . . . . 7 0 ∈ ℝ
3 1re 10906 . . . . . . . 8 1 ∈ ℝ
4 3nn 11982 . . . . . . . 8 3 ∈ ℕ
5 nndivre 11944 . . . . . . . 8 ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ)
63, 4, 5mp2an 688 . . . . . . 7 (1 / 3) ∈ ℝ
7 3re 11983 . . . . . . . 8 3 ∈ ℝ
8 3pos 12008 . . . . . . . 8 0 < 3
97, 8recgt0ii 11811 . . . . . . 7 0 < (1 / 3)
102, 6, 9ltleii 11028 . . . . . 6 0 ≤ (1 / 3)
11 expge0 13747 . . . . . . 7 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
126, 11mp3an1 1446 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘))
131, 10, 12sylancl 585 . . . . 5 (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘))
14133ad2ant3 1133 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘))
15 0le0 12004 . . . 4 0 ≤ 0
16 breq2 5074 . . . . 5 (((1 / 3)↑𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
17 breq2 5074 . . . . 5 (0 = if(𝑘𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0)))
1816, 17ifboth 4495 . . . 4 ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
1914, 15, 18sylancl 585 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
20 sstr 3925 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ)
21 rpnnen2.1 . . . . 5 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛𝑥, ((1 / 3)↑𝑛), 0)))
2221rpnnen2lem1 15851 . . . 4 ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2320, 22stoic3 1780 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) = if(𝑘𝐴, ((1 / 3)↑𝑘), 0))
2419, 23breqtrrd 5098 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹𝐴)‘𝑘))
25 reexpcl 13727 . . . . . 6 (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ)
266, 1, 25sylancr 586 . . . . 5 (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ)
27263ad2ant3 1133 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ)
28 0red 10909 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ)
29 simp1 1134 . . . . 5 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴𝐵)
3029sseld 3916 . . . 4 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘𝐴𝑘𝐵))
31 ifle 12860 . . . 4 (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘𝐴𝑘𝐵)) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3227, 28, 14, 30, 31syl31anc 1371 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3321rpnnen2lem1 15851 . . . 4 ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
34333adant1 1128 . . 3 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐵)‘𝑘) = if(𝑘𝐵, ((1 / 3)↑𝑘), 0))
3532, 23, 343brtr4d 5102 . 2 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘))
3624, 35jca 511 1 ((𝐴𝐵𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹𝐴)‘𝑘) ∧ ((𝐹𝐴)‘𝑘) ≤ ((𝐹𝐵)‘𝑘)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wss 3883  ifcif 4456  𝒫 cpw 4530   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803  cle 10941   / cdiv 11562  cn 11903  3c3 11959  0cn0 12163  cexp 13710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-seq 13650  df-exp 13711
This theorem is referenced by:  rpnnen2lem5  15855  rpnnen2lem7  15857  rpnnen2lem12  15862
  Copyright terms: Public domain W3C validator