![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rpnnen2lem4 | Structured version Visualization version GIF version |
Description: Lemma for rpnnen2 16188. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.) |
Ref | Expression |
---|---|
rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
Ref | Expression |
---|---|
rpnnen2lem4 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnnn0 12495 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
2 | 0re 11232 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
3 | 1re 11230 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
4 | 3nn 12307 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
5 | nndivre 12269 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
6 | 3, 4, 5 | mp2an 691 | . . . . . . 7 ⊢ (1 / 3) ∈ ℝ |
7 | 3re 12308 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
8 | 3pos 12333 | . . . . . . . 8 ⊢ 0 < 3 | |
9 | 7, 8 | recgt0ii 12136 | . . . . . . 7 ⊢ 0 < (1 / 3) |
10 | 2, 6, 9 | ltleii 11353 | . . . . . 6 ⊢ 0 ≤ (1 / 3) |
11 | expge0 14081 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘)) | |
12 | 6, 11 | mp3an1 1445 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘)) |
13 | 1, 10, 12 | sylancl 585 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘)) |
14 | 13 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘)) |
15 | 0le0 12329 | . . . 4 ⊢ 0 ≤ 0 | |
16 | breq2 5146 | . . . . 5 ⊢ (((1 / 3)↑𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0))) | |
17 | breq2 5146 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0))) | |
18 | 16, 17 | ifboth 4563 | . . . 4 ⊢ ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
19 | 14, 15, 18 | sylancl 585 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
20 | sstr 3986 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ) | |
21 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
22 | 21 | rpnnen2lem1 16176 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
23 | 20, 22 | stoic3 1771 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
24 | 19, 23 | breqtrrd 5170 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝐴)‘𝑘)) |
25 | reexpcl 14061 | . . . . . 6 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ) | |
26 | 6, 1, 25 | sylancr 586 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ) |
27 | 26 | 3ad2ant3 1133 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ) |
28 | 0red 11233 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ) | |
29 | simp1 1134 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴 ⊆ 𝐵) | |
30 | 29 | sseld 3977 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵)) |
31 | ifle 13194 | . . . 4 ⊢ (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵)) → if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) | |
32 | 27, 28, 14, 30, 31 | syl31anc 1371 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
33 | 21 | rpnnen2lem1 16176 | . . . 4 ⊢ ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
34 | 33 | 3adant1 1128 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
35 | 32, 23, 34 | 3brtr4d 5174 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
36 | 24, 35 | jca 511 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 ifcif 4524 𝒫 cpw 4598 class class class wbr 5142 ↦ cmpt 5225 ‘cfv 6542 (class class class)co 7414 ℝcr 11123 0cc0 11124 1c1 11125 ≤ cle 11265 / cdiv 11887 ℕcn 12228 3c3 12284 ℕ0cn0 12488 ↑cexp 14044 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-div 11888 df-nn 12229 df-2 12291 df-3 12292 df-n0 12489 df-z 12575 df-uz 12839 df-seq 13985 df-exp 14045 |
This theorem is referenced by: rpnnen2lem5 16180 rpnnen2lem7 16182 rpnnen2lem12 16187 |
Copyright terms: Public domain | W3C validator |