| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rpnnen2lem4 | Structured version Visualization version GIF version | ||
| Description: Lemma for rpnnen2 16135. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 31-Aug-2014.) |
| Ref | Expression |
|---|---|
| rpnnen2.1 | ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) |
| Ref | Expression |
|---|---|
| rpnnen2lem4 | ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 12388 | . . . . . 6 ⊢ (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0) | |
| 2 | 0re 11114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 3 | 1re 11112 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
| 4 | 3nn 12204 | . . . . . . . 8 ⊢ 3 ∈ ℕ | |
| 5 | nndivre 12166 | . . . . . . . 8 ⊢ ((1 ∈ ℝ ∧ 3 ∈ ℕ) → (1 / 3) ∈ ℝ) | |
| 6 | 3, 4, 5 | mp2an 692 | . . . . . . 7 ⊢ (1 / 3) ∈ ℝ |
| 7 | 3re 12205 | . . . . . . . 8 ⊢ 3 ∈ ℝ | |
| 8 | 3pos 12230 | . . . . . . . 8 ⊢ 0 < 3 | |
| 9 | 7, 8 | recgt0ii 12028 | . . . . . . 7 ⊢ 0 < (1 / 3) |
| 10 | 2, 6, 9 | ltleii 11236 | . . . . . 6 ⊢ 0 ≤ (1 / 3) |
| 11 | expge0 14005 | . . . . . . 7 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘)) | |
| 12 | 6, 11 | mp3an1 1450 | . . . . . 6 ⊢ ((𝑘 ∈ ℕ0 ∧ 0 ≤ (1 / 3)) → 0 ≤ ((1 / 3)↑𝑘)) |
| 13 | 1, 10, 12 | sylancl 586 | . . . . 5 ⊢ (𝑘 ∈ ℕ → 0 ≤ ((1 / 3)↑𝑘)) |
| 14 | 13 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((1 / 3)↑𝑘)) |
| 15 | 0le0 12226 | . . . 4 ⊢ 0 ≤ 0 | |
| 16 | breq2 5093 | . . . . 5 ⊢ (((1 / 3)↑𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ ((1 / 3)↑𝑘) ↔ 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0))) | |
| 17 | breq2 5093 | . . . . 5 ⊢ (0 = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0))) | |
| 18 | 16, 17 | ifboth 4512 | . . . 4 ⊢ ((0 ≤ ((1 / 3)↑𝑘) ∧ 0 ≤ 0) → 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
| 19 | 14, 15, 18 | sylancl 586 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
| 20 | sstr 3938 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ) → 𝐴 ⊆ ℕ) | |
| 21 | rpnnen2.1 | . . . . 5 ⊢ 𝐹 = (𝑥 ∈ 𝒫 ℕ ↦ (𝑛 ∈ ℕ ↦ if(𝑛 ∈ 𝑥, ((1 / 3)↑𝑛), 0))) | |
| 22 | 21 | rpnnen2lem1 16123 | . . . 4 ⊢ ((𝐴 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
| 23 | 20, 22 | stoic3 1777 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) = if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0)) |
| 24 | 19, 23 | breqtrrd 5117 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ≤ ((𝐹‘𝐴)‘𝑘)) |
| 25 | reexpcl 13985 | . . . . . 6 ⊢ (((1 / 3) ∈ ℝ ∧ 𝑘 ∈ ℕ0) → ((1 / 3)↑𝑘) ∈ ℝ) | |
| 26 | 6, 1, 25 | sylancr 587 | . . . . 5 ⊢ (𝑘 ∈ ℕ → ((1 / 3)↑𝑘) ∈ ℝ) |
| 27 | 26 | 3ad2ant3 1135 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((1 / 3)↑𝑘) ∈ ℝ) |
| 28 | 0red 11115 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 0 ∈ ℝ) | |
| 29 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → 𝐴 ⊆ 𝐵) | |
| 30 | 29 | sseld 3928 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵)) |
| 31 | ifle 13096 | . . . 4 ⊢ (((((1 / 3)↑𝑘) ∈ ℝ ∧ 0 ∈ ℝ ∧ 0 ≤ ((1 / 3)↑𝑘)) ∧ (𝑘 ∈ 𝐴 → 𝑘 ∈ 𝐵)) → if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) | |
| 32 | 27, 28, 14, 30, 31 | syl31anc 1375 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → if(𝑘 ∈ 𝐴, ((1 / 3)↑𝑘), 0) ≤ if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
| 33 | 21 | rpnnen2lem1 16123 | . . . 4 ⊢ ((𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
| 34 | 33 | 3adant1 1130 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐵)‘𝑘) = if(𝑘 ∈ 𝐵, ((1 / 3)↑𝑘), 0)) |
| 35 | 32, 23, 34 | 3brtr4d 5121 | . 2 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘)) |
| 36 | 24, 35 | jca 511 | 1 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ ℕ ∧ 𝑘 ∈ ℕ) → (0 ≤ ((𝐹‘𝐴)‘𝑘) ∧ ((𝐹‘𝐴)‘𝑘) ≤ ((𝐹‘𝐵)‘𝑘))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ifcif 4472 𝒫 cpw 4547 class class class wbr 5089 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 0cc0 11006 1c1 11007 ≤ cle 11147 / cdiv 11774 ℕcn 12125 3c3 12181 ℕ0cn0 12381 ↑cexp 13968 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-seq 13909 df-exp 13969 |
| This theorem is referenced by: rpnnen2lem5 16127 rpnnen2lem7 16129 rpnnen2lem12 16134 |
| Copyright terms: Public domain | W3C validator |