| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > z2ge | Structured version Visualization version GIF version | ||
| Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
| Ref | Expression |
|---|---|
| z2ge | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcl 4544 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
| 3 | zre 12584 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 4 | zre 12584 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | max1 13193 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 6 | max2 13195 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 7 | 5, 6 | jca 511 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 8 | 3, 4, 7 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 9 | breq2 5120 | . . . 4 ⊢ (𝑘 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 10 | breq2 5120 | . . . 4 ⊢ (𝑘 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑘 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 12 | 11 | rspcev 3599 | . 2 ⊢ ((if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ ∧ (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| 13 | 2, 8, 12 | syl2anc 584 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ifcif 4498 class class class wbr 5116 ℝcr 11120 ≤ cle 11262 ℤcz 12580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-pre-lttri 11195 ax-pre-lttrn 11196 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-neg 11461 df-z 12581 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |