MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  z2ge Structured version   Visualization version   GIF version

Theorem z2ge 12645
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem z2ge
StepHypRef Expression
1 ifcl 4468 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
21ancoms 462 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
3 zre 12037 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12037 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 max1 12632 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6 max2 12634 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
75, 6jca 515 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
83, 4, 7syl2an 598 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
9 breq2 5040 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑘𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
10 breq2 5040 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑘𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
119, 10anbi12d 633 . . 3 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → ((𝑀𝑘𝑁𝑘) ↔ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
1211rspcev 3543 . 2 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
132, 8, 12syl2anc 587 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3071  ifcif 4423   class class class wbr 5036  cr 10587  cle 10727  cz 12033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-pre-lttri 10662  ax-pre-lttrn 10663
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-br 5037  df-opab 5099  df-mpt 5117  df-id 5434  df-po 5447  df-so 5448  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-ov 7159  df-er 8305  df-en 8541  df-dom 8542  df-sdom 8543  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-neg 10924  df-z 12034
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator