| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > z2ge | Structured version Visualization version GIF version | ||
| Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.) |
| Ref | Expression |
|---|---|
| z2ge | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifcl 4551 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) | |
| 2 | 1 | ancoms 458 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ) |
| 3 | zre 12600 | . . 3 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 4 | zre 12600 | . . 3 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℝ) | |
| 5 | max1 13209 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 6 | max2 13211 | . . . 4 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)) | |
| 7 | 5, 6 | jca 511 | . . 3 ⊢ ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 8 | 3, 4, 7 | syl2an 596 | . 2 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) |
| 9 | breq2 5127 | . . . 4 ⊢ (𝑘 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) → (𝑀 ≤ 𝑘 ↔ 𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 10 | breq2 5127 | . . . 4 ⊢ (𝑘 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) → (𝑁 ≤ 𝑘 ↔ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) | |
| 11 | 9, 10 | anbi12d 632 | . . 3 ⊢ (𝑘 = if(𝑀 ≤ 𝑁, 𝑁, 𝑀) → ((𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘) ↔ (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀)))) |
| 12 | 11 | rspcev 3605 | . 2 ⊢ ((if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∈ ℤ ∧ (𝑀 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀 ≤ 𝑁, 𝑁, 𝑀))) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| 13 | 2, 8, 12 | syl2anc 584 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀 ≤ 𝑘 ∧ 𝑁 ≤ 𝑘)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 ifcif 4505 class class class wbr 5123 ℝcr 11136 ≤ cle 11278 ℤcz 12596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-cnex 11193 ax-resscn 11194 ax-pre-lttri 11211 ax-pre-lttrn 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-po 5572 df-so 5573 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-xr 11281 df-ltxr 11282 df-le 11283 df-neg 11477 df-z 12597 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |