MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  z2ge Structured version   Visualization version   GIF version

Theorem z2ge 13201
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem z2ge
StepHypRef Expression
1 ifcl 4569 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
21ancoms 458 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
3 zre 12584 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12584 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 max1 13188 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6 max2 13190 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
75, 6jca 511 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
83, 4, 7syl2an 595 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
9 breq2 5146 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑘𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
10 breq2 5146 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑘𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
119, 10anbi12d 630 . . 3 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → ((𝑀𝑘𝑁𝑘) ↔ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
1211rspcev 3607 . 2 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
132, 8, 12syl2anc 583 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  wrex 3065  ifcif 4524   class class class wbr 5142  cr 11129  cle 11271  cz 12580
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11186  ax-resscn 11187  ax-pre-lttri 11204  ax-pre-lttrn 11205
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-er 8718  df-en 8956  df-dom 8957  df-sdom 8958  df-pnf 11272  df-mnf 11273  df-xr 11274  df-ltxr 11275  df-le 11276  df-neg 11469  df-z 12581
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator