MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  z2ge Structured version   Visualization version   GIF version

Theorem z2ge 13181
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem z2ge
StepHypRef Expression
1 ifcl 4572 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
21ancoms 457 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
3 zre 12566 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 12566 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 max1 13168 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6 max2 13170 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
75, 6jca 510 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
83, 4, 7syl2an 594 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
9 breq2 5151 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑘𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
10 breq2 5151 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑘𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
119, 10anbi12d 629 . . 3 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → ((𝑀𝑘𝑁𝑘) ↔ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
1211rspcev 3611 . 2 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
132, 8, 12syl2anc 582 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1539  wcel 2104  wrex 3068  ifcif 4527   class class class wbr 5147  cr 11111  cle 11253  cz 12562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-er 8705  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-neg 11451  df-z 12563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator