Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > max0sub | Structured version Visualization version GIF version |
Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
max0sub | ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 10909 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | iftrue 4462 | . . . . 5 ⊢ (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) | |
4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) |
5 | 0xr 10953 | . . . . 5 ⊢ 0 ∈ ℝ* | |
6 | renegcl 11214 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ) |
8 | 7 | rexrd 10956 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ*) |
9 | le0neg2 11414 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) | |
10 | 9 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0) |
11 | xrmaxeq 12842 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = 0) | |
12 | 5, 8, 10, 11 | mp3an2i 1464 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0) |
13 | 4, 12 | oveq12d 7273 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 − 0)) |
14 | recn 10892 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 14 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
16 | 15 | subid1d 11251 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 − 0) = 𝐴) |
17 | 13, 16 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
18 | rexr 10952 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ*) |
20 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0) | |
21 | xrmaxeq 12842 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0) | |
22 | 5, 19, 20, 21 | mp3an2i 1464 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0) |
23 | le0neg1 11413 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | |
24 | 23 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴) |
25 | 24 | iftrued 4464 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴) |
26 | 22, 25 | oveq12d 7273 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (0 − -𝐴)) |
27 | df-neg 11138 | . . . 4 ⊢ --𝐴 = (0 − -𝐴) | |
28 | 14 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ) |
29 | 28 | negnegd 11253 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → --𝐴 = 𝐴) |
30 | 27, 29 | eqtr3id 2793 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 − -𝐴) = 𝐴) |
31 | 26, 30 | eqtrd 2778 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
32 | 1, 2, 17, 31 | lecasei 11011 | 1 ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ifcif 4456 class class class wbr 5070 (class class class)co 7255 ℂcc 10800 ℝcr 10801 0cc0 10802 ℝ*cxr 10939 ≤ cle 10941 − cmin 11135 -cneg 11136 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 |
This theorem is referenced by: mbfi1flimlem 24792 itgitg1 24878 itgconst 24888 itgaddlem2 24893 itgmulc2lem2 24902 itgaddnclem2 35763 itgmulc2nclem2 35771 |
Copyright terms: Public domain | W3C validator |