![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > max0sub | Structured version Visualization version GIF version |
Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
Ref | Expression |
---|---|
max0sub | ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0red 11196 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
2 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
3 | iftrue 4525 | . . . . 5 ⊢ (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) | |
4 | 3 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) |
5 | 0xr 11240 | . . . . 5 ⊢ 0 ∈ ℝ* | |
6 | renegcl 11502 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
7 | 6 | adantr 481 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ) |
8 | 7 | rexrd 11243 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ*) |
9 | le0neg2 11702 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) | |
10 | 9 | biimpa 477 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0) |
11 | xrmaxeq 13137 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = 0) | |
12 | 5, 8, 10, 11 | mp3an2i 1466 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0) |
13 | 4, 12 | oveq12d 7408 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 − 0)) |
14 | recn 11179 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
15 | 14 | adantr 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
16 | 15 | subid1d 11539 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 − 0) = 𝐴) |
17 | 13, 16 | eqtrd 2771 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
18 | rexr 11239 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
19 | 18 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ*) |
20 | simpr 485 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0) | |
21 | xrmaxeq 13137 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0) | |
22 | 5, 19, 20, 21 | mp3an2i 1466 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0) |
23 | le0neg1 11701 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | |
24 | 23 | biimpa 477 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴) |
25 | 24 | iftrued 4527 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴) |
26 | 22, 25 | oveq12d 7408 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (0 − -𝐴)) |
27 | df-neg 11426 | . . . 4 ⊢ --𝐴 = (0 − -𝐴) | |
28 | 14 | adantr 481 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ) |
29 | 28 | negnegd 11541 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → --𝐴 = 𝐴) |
30 | 27, 29 | eqtr3id 2785 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 − -𝐴) = 𝐴) |
31 | 26, 30 | eqtrd 2771 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
32 | 1, 2, 17, 31 | lecasei 11299 | 1 ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ifcif 4519 class class class wbr 5138 (class class class)co 7390 ℂcc 11087 ℝcr 11088 0cc0 11089 ℝ*cxr 11226 ≤ cle 11228 − cmin 11423 -cneg 11424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7705 ax-cnex 11145 ax-resscn 11146 ax-1cn 11147 ax-icn 11148 ax-addcl 11149 ax-addrcl 11150 ax-mulcl 11151 ax-mulrcl 11152 ax-mulcom 11153 ax-addass 11154 ax-mulass 11155 ax-distr 11156 ax-i2m1 11157 ax-1ne0 11158 ax-1rid 11159 ax-rnegex 11160 ax-rrecex 11161 ax-cnre 11162 ax-pre-lttri 11163 ax-pre-lttrn 11164 ax-pre-ltadd 11165 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3430 df-v 3472 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4520 df-pw 4595 df-sn 4620 df-pr 4622 df-op 4626 df-uni 4899 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-po 5578 df-so 5579 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6481 df-fun 6531 df-fn 6532 df-f 6533 df-f1 6534 df-fo 6535 df-f1o 6536 df-fv 6537 df-riota 7346 df-ov 7393 df-oprab 7394 df-mpo 7395 df-er 8683 df-en 8920 df-dom 8921 df-sdom 8922 df-pnf 11229 df-mnf 11230 df-xr 11231 df-ltxr 11232 df-le 11233 df-sub 11425 df-neg 11426 |
This theorem is referenced by: mbfi1flimlem 25164 itgitg1 25250 itgconst 25260 itgaddlem2 25265 itgmulc2lem2 25274 itgaddnclem2 36335 itgmulc2nclem2 36343 |
Copyright terms: Public domain | W3C validator |