| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > max0sub | Structured version Visualization version GIF version | ||
| Description: Decompose a real number into positive and negative parts. (Contributed by Mario Carneiro, 6-Aug-2014.) |
| Ref | Expression |
|---|---|
| max0sub | ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red 11153 | . 2 ⊢ (𝐴 ∈ ℝ → 0 ∈ ℝ) | |
| 2 | id 22 | . 2 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ) | |
| 3 | iftrue 4490 | . . . . 5 ⊢ (0 ≤ 𝐴 → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) | |
| 4 | 3 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ 𝐴, 𝐴, 0) = 𝐴) |
| 5 | 0xr 11197 | . . . . 5 ⊢ 0 ∈ ℝ* | |
| 6 | renegcl 11461 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → -𝐴 ∈ ℝ) | |
| 7 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ) |
| 8 | 7 | rexrd 11200 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ∈ ℝ*) |
| 9 | le0neg2 11663 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (0 ≤ 𝐴 ↔ -𝐴 ≤ 0)) | |
| 10 | 9 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → -𝐴 ≤ 0) |
| 11 | xrmaxeq 13115 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ -𝐴 ∈ ℝ* ∧ -𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = 0) | |
| 12 | 5, 8, 10, 11 | mp3an2i 1468 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → if(0 ≤ -𝐴, -𝐴, 0) = 0) |
| 13 | 4, 12 | oveq12d 7387 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (𝐴 − 0)) |
| 14 | recn 11134 | . . . . 5 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 15 | 14 | adantr 480 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → 𝐴 ∈ ℂ) |
| 16 | 15 | subid1d 11498 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 − 0) = 𝐴) |
| 17 | 13, 16 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
| 18 | rexr 11196 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*) | |
| 19 | 18 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℝ*) |
| 20 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ≤ 0) | |
| 21 | xrmaxeq 13115 | . . . . 5 ⊢ ((0 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0) | |
| 22 | 5, 19, 20, 21 | mp3an2i 1468 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ 𝐴, 𝐴, 0) = 0) |
| 23 | le0neg1 11662 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴)) | |
| 24 | 23 | biimpa 476 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 0 ≤ -𝐴) |
| 25 | 24 | iftrued 4492 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → if(0 ≤ -𝐴, -𝐴, 0) = -𝐴) |
| 26 | 22, 25 | oveq12d 7387 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = (0 − -𝐴)) |
| 27 | df-neg 11384 | . . . 4 ⊢ --𝐴 = (0 − -𝐴) | |
| 28 | 14 | adantr 480 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → 𝐴 ∈ ℂ) |
| 29 | 28 | negnegd 11500 | . . . 4 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → --𝐴 = 𝐴) |
| 30 | 27, 29 | eqtr3id 2778 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (0 − -𝐴) = 𝐴) |
| 31 | 26, 30 | eqtrd 2764 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ≤ 0) → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
| 32 | 1, 2, 17, 31 | lecasei 11256 | 1 ⊢ (𝐴 ∈ ℝ → (if(0 ≤ 𝐴, 𝐴, 0) − if(0 ≤ -𝐴, -𝐴, 0)) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ifcif 4484 class class class wbr 5102 (class class class)co 7369 ℂcc 11042 ℝcr 11043 0cc0 11044 ℝ*cxr 11183 ≤ cle 11185 − cmin 11381 -cneg 11382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-po 5539 df-so 5540 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 |
| This theorem is referenced by: mbfi1flimlem 25599 itgitg1 25686 itgconst 25696 itgaddlem2 25701 itgmulc2lem2 25710 itgaddnclem2 37646 itgmulc2nclem2 37654 |
| Copyright terms: Public domain | W3C validator |