Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl Structured version   Visualization version   GIF version

Theorem igenidl 38057
Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenidl ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))

Proof of Theorem igenidl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . 3 𝐺 = (1st𝑅)
2 igenval.2 . . 3 𝑋 = ran 𝐺
31, 2igenval 38055 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
41, 2rngoidl 38018 . . . . 5 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
5 sseq2 3973 . . . . . 6 (𝑗 = 𝑋 → (𝑆𝑗𝑆𝑋))
65rspcev 3588 . . . . 5 ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
74, 6sylan 580 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
8 rabn0 4352 . . . 4 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
97, 8sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅)
10 ssrab2 4043 . . . 4 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ (Idl‘𝑅)
11 intidl 38023 . . . 4 ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
1210, 11mp3an3 1452 . . 3 ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
139, 12syldan 591 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
143, 13eqeltrd 2828 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  wss 3914  c0 4296   cint 4910  ran crn 5639  cfv 6511  (class class class)co 7387  1st c1st 7966  RingOpscrngo 37888  Idlcidl 38001   IdlGen cigen 38053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-grpo 30422  df-gid 30423  df-ablo 30474  df-rngo 37889  df-idl 38004  df-igen 38054
This theorem is referenced by:  igenval2  38060  isfldidl  38062  ispridlc  38064
  Copyright terms: Public domain W3C validator