Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenidl | Structured version Visualization version GIF version |
Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
igenval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
igenidl | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | igenval.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | igenval 35805 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
4 | 1, 2 | rngoidl 35768 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
5 | sseq2 3920 | . . . . . 6 ⊢ (𝑗 = 𝑋 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋)) | |
6 | 5 | rspcev 3543 | . . . . 5 ⊢ ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
7 | 4, 6 | sylan 583 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
8 | rabn0 4284 | . . . 4 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) | |
9 | 7, 8 | sylibr 237 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) |
10 | ssrab2 3986 | . . . 4 ⊢ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ (Idl‘𝑅) | |
11 | intidl 35773 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ (Idl‘𝑅)) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) | |
12 | 10, 11 | mp3an3 1447 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) |
13 | 9, 12 | syldan 594 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) |
14 | 3, 13 | eqeltrd 2852 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 {crab 3074 ⊆ wss 3860 ∅c0 4227 ∩ cint 4841 ran crn 5528 ‘cfv 6339 (class class class)co 7155 1st c1st 7696 RingOpscrngo 35638 Idlcidl 35751 IdlGen cigen 35803 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-fo 6345 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-1st 7698 df-2nd 7699 df-grpo 28380 df-gid 28381 df-ablo 28432 df-rngo 35639 df-idl 35754 df-igen 35804 |
This theorem is referenced by: igenval2 35810 isfldidl 35812 ispridlc 35814 |
Copyright terms: Public domain | W3C validator |