Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl Structured version   Visualization version   GIF version

Theorem igenidl 36221
Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenidl ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))

Proof of Theorem igenidl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . 3 𝐺 = (1st𝑅)
2 igenval.2 . . 3 𝑋 = ran 𝐺
31, 2igenval 36219 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
41, 2rngoidl 36182 . . . . 5 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
5 sseq2 3947 . . . . . 6 (𝑗 = 𝑋 → (𝑆𝑗𝑆𝑋))
65rspcev 3561 . . . . 5 ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
74, 6sylan 580 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
8 rabn0 4319 . . . 4 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
97, 8sylibr 233 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅)
10 ssrab2 4013 . . . 4 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ (Idl‘𝑅)
11 intidl 36187 . . . 4 ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
1210, 11mp3an3 1449 . . 3 ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
139, 12syldan 591 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
143, 13eqeltrd 2839 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  wss 3887  c0 4256   cint 4879  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  RingOpscrngo 36052  Idlcidl 36165   IdlGen cigen 36217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-ablo 28907  df-rngo 36053  df-idl 36168  df-igen 36218
This theorem is referenced by:  igenval2  36224  isfldidl  36226  ispridlc  36228
  Copyright terms: Public domain W3C validator