| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > igenidl | Structured version Visualization version GIF version | ||
| Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| igenval.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| igenidl | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | igenval.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | igenval.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 3 | 1, 2 | igenval 38080 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
| 4 | 1, 2 | rngoidl 38043 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
| 5 | sseq2 3959 | . . . . . 6 ⊢ (𝑗 = 𝑋 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋)) | |
| 6 | 5 | rspcev 3575 | . . . . 5 ⊢ ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
| 7 | 4, 6 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
| 8 | rabn0 4337 | . . . 4 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) | |
| 9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) |
| 10 | ssrab2 4028 | . . . 4 ⊢ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ (Idl‘𝑅) | |
| 11 | intidl 38048 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ (Idl‘𝑅)) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) | |
| 12 | 10, 11 | mp3an3 1452 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) |
| 13 | 9, 12 | syldan 591 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) |
| 14 | 3, 13 | eqeltrd 2829 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∃wrex 3054 {crab 3393 ⊆ wss 3900 ∅c0 4281 ∩ cint 4895 ran crn 5615 ‘cfv 6477 (class class class)co 7341 1st c1st 7914 RingOpscrngo 37913 Idlcidl 38026 IdlGen cigen 38078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-fo 6483 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-grpo 30463 df-gid 30464 df-ablo 30515 df-rngo 37914 df-idl 38029 df-igen 38079 |
| This theorem is referenced by: igenval2 38085 isfldidl 38087 ispridlc 38089 |
| Copyright terms: Public domain | W3C validator |