Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  igenidl Structured version   Visualization version   GIF version

Theorem igenidl 38050
Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
igenval.1 𝐺 = (1st𝑅)
igenval.2 𝑋 = ran 𝐺
Assertion
Ref Expression
igenidl ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))

Proof of Theorem igenidl
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 igenval.1 . . 3 𝐺 = (1st𝑅)
2 igenval.2 . . 3 𝑋 = ran 𝐺
31, 2igenval 38048 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) = {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗})
41, 2rngoidl 38011 . . . . 5 (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅))
5 sseq2 4022 . . . . . 6 (𝑗 = 𝑋 → (𝑆𝑗𝑆𝑋))
65rspcev 3622 . . . . 5 ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
74, 6sylan 580 . . . 4 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
8 rabn0 4395 . . . 4 ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆𝑗)
97, 8sylibr 234 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅)
10 ssrab2 4090 . . . 4 {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ (Idl‘𝑅)
11 intidl 38016 . . . 4 ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅ ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ⊆ (Idl‘𝑅)) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
1210, 11mp3an3 1449 . . 3 ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ≠ ∅) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
139, 12syldan 591 . 2 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆𝑗} ∈ (Idl‘𝑅))
143, 13eqeltrd 2839 1 ((𝑅 ∈ RingOps ∧ 𝑆𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wrex 3068  {crab 3433  wss 3963  c0 4339   cint 4951  ran crn 5690  cfv 6563  (class class class)co 7431  1st c1st 8011  RingOpscrngo 37881  Idlcidl 37994   IdlGen cigen 38046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-fo 6569  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-grpo 30522  df-gid 30523  df-ablo 30574  df-rngo 37882  df-idl 37997  df-igen 38047
This theorem is referenced by:  igenval2  38053  isfldidl  38055  ispridlc  38057
  Copyright terms: Public domain W3C validator