![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > igenidl | Structured version Visualization version GIF version |
Description: The ideal generated by a set is an ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
igenval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
igenval.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
igenidl | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | igenval.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | igenval.2 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | igenval 38048 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) = ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗}) |
4 | 1, 2 | rngoidl 38011 | . . . . 5 ⊢ (𝑅 ∈ RingOps → 𝑋 ∈ (Idl‘𝑅)) |
5 | sseq2 4022 | . . . . . 6 ⊢ (𝑗 = 𝑋 → (𝑆 ⊆ 𝑗 ↔ 𝑆 ⊆ 𝑋)) | |
6 | 5 | rspcev 3622 | . . . . 5 ⊢ ((𝑋 ∈ (Idl‘𝑅) ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
7 | 4, 6 | sylan 580 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) |
8 | rabn0 4395 | . . . 4 ⊢ ({𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ↔ ∃𝑗 ∈ (Idl‘𝑅)𝑆 ⊆ 𝑗) | |
9 | 7, 8 | sylibr 234 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) |
10 | ssrab2 4090 | . . . 4 ⊢ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ (Idl‘𝑅) | |
11 | intidl 38016 | . . . 4 ⊢ ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅ ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ⊆ (Idl‘𝑅)) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) | |
12 | 10, 11 | mp3an3 1449 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ≠ ∅) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) |
13 | 9, 12 | syldan 591 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → ∩ {𝑗 ∈ (Idl‘𝑅) ∣ 𝑆 ⊆ 𝑗} ∈ (Idl‘𝑅)) |
14 | 3, 13 | eqeltrd 2839 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ⊆ 𝑋) → (𝑅 IdlGen 𝑆) ∈ (Idl‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 ∃wrex 3068 {crab 3433 ⊆ wss 3963 ∅c0 4339 ∩ cint 4951 ran crn 5690 ‘cfv 6563 (class class class)co 7431 1st c1st 8011 RingOpscrngo 37881 Idlcidl 37994 IdlGen cigen 38046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fo 6569 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-grpo 30522 df-gid 30523 df-ablo 30574 df-rngo 37882 df-idl 37997 df-igen 38047 |
This theorem is referenced by: igenval2 38053 isfldidl 38055 ispridlc 38057 |
Copyright terms: Public domain | W3C validator |