MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfval Structured version   Visualization version   GIF version

Theorem invfval 17710
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐡 = (Baseβ€˜πΆ)
invfval.n 𝑁 = (Invβ€˜πΆ)
invfval.c (πœ‘ β†’ 𝐢 ∈ Cat)
invfval.x (πœ‘ β†’ 𝑋 ∈ 𝐡)
invfval.y (πœ‘ β†’ π‘Œ ∈ 𝐡)
invfval.s 𝑆 = (Sectβ€˜πΆ)
Assertion
Ref Expression
invfval (πœ‘ β†’ (π‘‹π‘π‘Œ) = ((π‘‹π‘†π‘Œ) ∩ β—‘(π‘Œπ‘†π‘‹)))

Proof of Theorem invfval
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . 3 𝐡 = (Baseβ€˜πΆ)
2 invfval.n . . 3 𝑁 = (Invβ€˜πΆ)
3 invfval.c . . 3 (πœ‘ β†’ 𝐢 ∈ Cat)
4 invfval.x . . 3 (πœ‘ β†’ 𝑋 ∈ 𝐡)
5 invfval.s . . 3 𝑆 = (Sectβ€˜πΆ)
61, 2, 3, 4, 4, 5invffval 17709 . 2 (πœ‘ β†’ 𝑁 = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯))))
7 simprl 769 . . . 4 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ π‘₯ = 𝑋)
8 simprr 771 . . . 4 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ 𝑦 = π‘Œ)
97, 8oveq12d 7429 . . 3 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (π‘₯𝑆𝑦) = (π‘‹π‘†π‘Œ))
108, 7oveq12d 7429 . . . 4 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ (𝑦𝑆π‘₯) = (π‘Œπ‘†π‘‹))
1110cnveqd 5875 . . 3 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ β—‘(𝑦𝑆π‘₯) = β—‘(π‘Œπ‘†π‘‹))
129, 11ineq12d 4213 . 2 ((πœ‘ ∧ (π‘₯ = 𝑋 ∧ 𝑦 = π‘Œ)) β†’ ((π‘₯𝑆𝑦) ∩ β—‘(𝑦𝑆π‘₯)) = ((π‘‹π‘†π‘Œ) ∩ β—‘(π‘Œπ‘†π‘‹)))
13 invfval.y . 2 (πœ‘ β†’ π‘Œ ∈ 𝐡)
14 ovex 7444 . . . 4 (π‘‹π‘†π‘Œ) ∈ V
1514inex1 5317 . . 3 ((π‘‹π‘†π‘Œ) ∩ β—‘(π‘Œπ‘†π‘‹)) ∈ V
1615a1i 11 . 2 (πœ‘ β†’ ((π‘‹π‘†π‘Œ) ∩ β—‘(π‘Œπ‘†π‘‹)) ∈ V)
176, 12, 4, 13, 16ovmpod 7562 1 (πœ‘ β†’ (π‘‹π‘π‘Œ) = ((π‘‹π‘†π‘Œ) ∩ β—‘(π‘Œπ‘†π‘‹)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   ∩ cin 3947  β—‘ccnv 5675  β€˜cfv 6543  (class class class)co 7411  Basecbs 17148  Catccat 17612  Sectcsect 17695  Invcinv 17696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-inv 17699
This theorem is referenced by:  isinv  17711  invss  17712  dfiso2  17723  oppcinv  17731
  Copyright terms: Public domain W3C validator