![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invfval | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
invfval | ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . 3 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.s | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
6 | 1, 2, 3, 4, 4, 5 | invffval 17819 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
7 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
8 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
9 | 7, 8 | oveq12d 7466 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝑆𝑦) = (𝑋𝑆𝑌)) |
10 | 8, 7 | oveq12d 7466 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦𝑆𝑥) = (𝑌𝑆𝑋)) |
11 | 10 | cnveqd 5900 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ◡(𝑦𝑆𝑥) = ◡(𝑌𝑆𝑋)) |
12 | 9, 11 | ineq12d 4242 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
13 | invfval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
14 | ovex 7481 | . . . 4 ⊢ (𝑋𝑆𝑌) ∈ V | |
15 | 14 | inex1 5335 | . . 3 ⊢ ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋)) ∈ V |
16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋)) ∈ V) |
17 | 6, 12, 4, 13, 16 | ovmpod 7602 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ◡ccnv 5699 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 Catccat 17722 Sectcsect 17805 Invcinv 17806 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-inv 17809 |
This theorem is referenced by: isinv 17821 invss 17822 dfiso2 17833 oppcinv 17841 |
Copyright terms: Public domain | W3C validator |