![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > invfval | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | β’ π΅ = (BaseβπΆ) |
invfval.n | β’ π = (InvβπΆ) |
invfval.c | β’ (π β πΆ β Cat) |
invfval.x | β’ (π β π β π΅) |
invfval.y | β’ (π β π β π΅) |
invfval.s | β’ π = (SectβπΆ) |
Ref | Expression |
---|---|
invfval | β’ (π β (πππ) = ((πππ) β© β‘(πππ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . 3 β’ π΅ = (BaseβπΆ) | |
2 | invfval.n | . . 3 β’ π = (InvβπΆ) | |
3 | invfval.c | . . 3 β’ (π β πΆ β Cat) | |
4 | invfval.x | . . 3 β’ (π β π β π΅) | |
5 | invfval.s | . . 3 β’ π = (SectβπΆ) | |
6 | 1, 2, 3, 4, 4, 5 | invffval 17709 | . 2 β’ (π β π = (π₯ β π΅, π¦ β π΅ β¦ ((π₯ππ¦) β© β‘(π¦ππ₯)))) |
7 | simprl 769 | . . . 4 β’ ((π β§ (π₯ = π β§ π¦ = π)) β π₯ = π) | |
8 | simprr 771 | . . . 4 β’ ((π β§ (π₯ = π β§ π¦ = π)) β π¦ = π) | |
9 | 7, 8 | oveq12d 7429 | . . 3 β’ ((π β§ (π₯ = π β§ π¦ = π)) β (π₯ππ¦) = (πππ)) |
10 | 8, 7 | oveq12d 7429 | . . . 4 β’ ((π β§ (π₯ = π β§ π¦ = π)) β (π¦ππ₯) = (πππ)) |
11 | 10 | cnveqd 5875 | . . 3 β’ ((π β§ (π₯ = π β§ π¦ = π)) β β‘(π¦ππ₯) = β‘(πππ)) |
12 | 9, 11 | ineq12d 4213 | . 2 β’ ((π β§ (π₯ = π β§ π¦ = π)) β ((π₯ππ¦) β© β‘(π¦ππ₯)) = ((πππ) β© β‘(πππ))) |
13 | invfval.y | . 2 β’ (π β π β π΅) | |
14 | ovex 7444 | . . . 4 β’ (πππ) β V | |
15 | 14 | inex1 5317 | . . 3 β’ ((πππ) β© β‘(πππ)) β V |
16 | 15 | a1i 11 | . 2 β’ (π β ((πππ) β© β‘(πππ)) β V) |
17 | 6, 12, 4, 13, 16 | ovmpod 7562 | 1 β’ (π β (πππ) = ((πππ) β© β‘(πππ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 β© cin 3947 β‘ccnv 5675 βcfv 6543 (class class class)co 7411 Basecbs 17148 Catccat 17612 Sectcsect 17695 Invcinv 17696 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-inv 17699 |
This theorem is referenced by: isinv 17711 invss 17712 dfiso2 17723 oppcinv 17731 |
Copyright terms: Public domain | W3C validator |