| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > invfval | Structured version Visualization version GIF version | ||
| Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| invfval | ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . 3 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invfval.s | . . 3 ⊢ 𝑆 = (Sect‘𝐶) | |
| 5 | 1, 2, 3, 4 | invffval 17667 | . 2 ⊢ (𝜑 → 𝑁 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)))) |
| 6 | simprl 770 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑥 = 𝑋) | |
| 7 | simprr 772 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → 𝑦 = 𝑌) | |
| 8 | 6, 7 | oveq12d 7370 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑥𝑆𝑦) = (𝑋𝑆𝑌)) |
| 9 | 7, 6 | oveq12d 7370 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → (𝑦𝑆𝑥) = (𝑌𝑆𝑋)) |
| 10 | 9 | cnveqd 5819 | . . 3 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ◡(𝑦𝑆𝑥) = ◡(𝑌𝑆𝑋)) |
| 11 | 8, 10 | ineq12d 4170 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝑋 ∧ 𝑦 = 𝑌)) → ((𝑥𝑆𝑦) ∩ ◡(𝑦𝑆𝑥)) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
| 12 | invfval.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 13 | invfval.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 14 | ovex 7385 | . . . 4 ⊢ (𝑋𝑆𝑌) ∈ V | |
| 15 | 14 | inex1 5257 | . . 3 ⊢ ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋)) ∈ V |
| 16 | 15 | a1i 11 | . 2 ⊢ (𝜑 → ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋)) ∈ V) |
| 17 | 5, 11, 12, 13, 16 | ovmpod 7504 | 1 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ◡ccnv 5618 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Catccat 17572 Sectcsect 17653 Invcinv 17654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-inv 17657 |
| This theorem is referenced by: isinv 17669 invss 17670 dfiso2 17681 oppcinv 17689 invpropdlem 49163 |
| Copyright terms: Public domain | W3C validator |