MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfval Structured version   Visualization version   GIF version

Theorem invfval 17471
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
invfval (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))

Proof of Theorem invfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . 3 𝐵 = (Base‘𝐶)
2 invfval.n . . 3 𝑁 = (Inv‘𝐶)
3 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
4 invfval.x . . 3 (𝜑𝑋𝐵)
5 invfval.s . . 3 𝑆 = (Sect‘𝐶)
61, 2, 3, 4, 4, 5invffval 17470 . 2 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
7 simprl 768 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
8 simprr 770 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
97, 8oveq12d 7293 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝑆𝑦) = (𝑋𝑆𝑌))
108, 7oveq12d 7293 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝑆𝑥) = (𝑌𝑆𝑋))
1110cnveqd 5784 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝑆𝑥) = (𝑌𝑆𝑋))
129, 11ineq12d 4147 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥)) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
13 invfval.y . 2 (𝜑𝑌𝐵)
14 ovex 7308 . . . 4 (𝑋𝑆𝑌) ∈ V
1514inex1 5241 . . 3 ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)) ∈ V
1615a1i 11 . 2 (𝜑 → ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)) ∈ V)
176, 12, 4, 13, 16ovmpod 7425 1 (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  ccnv 5588  cfv 6433  (class class class)co 7275  Basecbs 16912  Catccat 17373  Sectcsect 17456  Invcinv 17457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-inv 17460
This theorem is referenced by:  isinv  17472  invss  17473  dfiso2  17484  oppcinv  17492
  Copyright terms: Public domain W3C validator