MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  invfval Structured version   Visualization version   GIF version

Theorem invfval 17728
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
invfval (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))

Proof of Theorem invfval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 invfval.b . . 3 𝐵 = (Base‘𝐶)
2 invfval.n . . 3 𝑁 = (Inv‘𝐶)
3 invfval.c . . 3 (𝜑𝐶 ∈ Cat)
4 invfval.s . . 3 𝑆 = (Sect‘𝐶)
51, 2, 3, 4invffval 17727 . 2 (𝜑𝑁 = (𝑥𝐵, 𝑦𝐵 ↦ ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥))))
6 simprl 770 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑥 = 𝑋)
7 simprr 772 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → 𝑦 = 𝑌)
86, 7oveq12d 7408 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑥𝑆𝑦) = (𝑋𝑆𝑌))
97, 6oveq12d 7408 . . . 4 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝑆𝑥) = (𝑌𝑆𝑋))
109cnveqd 5842 . . 3 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → (𝑦𝑆𝑥) = (𝑌𝑆𝑋))
118, 10ineq12d 4187 . 2 ((𝜑 ∧ (𝑥 = 𝑋𝑦 = 𝑌)) → ((𝑥𝑆𝑦) ∩ (𝑦𝑆𝑥)) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
12 invfval.x . 2 (𝜑𝑋𝐵)
13 invfval.y . 2 (𝜑𝑌𝐵)
14 ovex 7423 . . . 4 (𝑋𝑆𝑌) ∈ V
1514inex1 5275 . . 3 ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)) ∈ V
1615a1i 11 . 2 (𝜑 → ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)) ∈ V)
175, 11, 12, 13, 16ovmpod 7544 1 (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  ccnv 5640  cfv 6514  (class class class)co 7390  Basecbs 17186  Catccat 17632  Sectcsect 17713  Invcinv 17714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-inv 17717
This theorem is referenced by:  isinv  17729  invss  17730  dfiso2  17741  oppcinv  17749  invpropdlem  49031
  Copyright terms: Public domain W3C validator