![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elirng | Structured version Visualization version GIF version |
Description: Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
Ref | Expression |
---|---|
irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
irngval.0 | ⊢ 0 = (0g‘𝑅) |
elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
Ref | Expression |
---|---|
elirng | ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | irngval.o | . . . . . 6 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
2 | irngval.u | . . . . . 6 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
3 | irngval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
4 | irngval.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
5 | elirng.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
6 | 5 | crngringd 20263 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
7 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
8 | 3 | subrgss 20588 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
10 | 1, 2, 3, 4, 6, 9 | irngval 33699 | . . . . 5 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) |
11 | 10 | eleq2d 2824 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ 𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }))) |
12 | eliun 4999 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 })) | |
13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }))) |
14 | eqid 2734 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
15 | eqid 2734 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
16 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑅 ∈ Ring) |
17 | 3 | fvexi 6920 | . . . . . . 7 ⊢ 𝐵 ∈ V |
18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝐵 ∈ V) |
19 | eqid 2734 | . . . . . . . . . . 11 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
20 | 1, 3, 14, 2, 19 | evls1rhm 22341 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
21 | 5, 7, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
22 | eqid 2734 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘𝑈)) | |
23 | 22, 15 | rhmf 20501 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
24 | 21, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
26 | eqid 2734 | . . . . . . . . 9 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
27 | 19, 22, 26 | mon1pcl 26198 | . . . . . . . 8 ⊢ (𝑓 ∈ (Monic1p‘𝑈) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
28 | 27 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
29 | 25, 28 | ffvelcdmd 7104 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓) ∈ (Base‘(𝑅 ↑s 𝐵))) |
30 | 14, 3, 15, 16, 18, 29 | pwselbas 17535 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓):𝐵⟶𝐵) |
31 | ffn 6736 | . . . . 5 ⊢ ((𝑂‘𝑓):𝐵⟶𝐵 → (𝑂‘𝑓) Fn 𝐵) | |
32 | fniniseg 7079 | . . . . 5 ⊢ ((𝑂‘𝑓) Fn 𝐵 → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) | |
33 | 30, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
34 | 33 | rexbidva 3174 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
35 | 13, 34 | bitrd 279 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
36 | r19.42v 3188 | . 2 ⊢ (∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 )) | |
37 | 35, 36 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 Vcvv 3477 ⊆ wss 3962 {csn 4630 ∪ ciun 4995 ◡ccnv 5687 “ cima 5691 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 ↾s cress 17273 0gc0g 17485 ↑s cpws 17492 Ringcrg 20250 CRingccrg 20251 RingHom crh 20485 SubRingcsubrg 20585 Poly1cpl1 22193 evalSub1 ces1 22332 Monic1pcmn1 26179 IntgRing cirng 33697 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-ofr 7697 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-sup 9479 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17487 df-gsum 17488 df-prds 17493 df-pws 17495 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-mhm 18808 df-submnd 18809 df-grp 18966 df-minusg 18967 df-sbg 18968 df-mulg 19098 df-subg 19153 df-ghm 19243 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-rng 20170 df-ur 20199 df-srg 20204 df-ring 20252 df-cring 20253 df-rhm 20488 df-subrng 20562 df-subrg 20586 df-lmod 20876 df-lss 20947 df-lsp 20987 df-assa 21890 df-asp 21891 df-ascl 21892 df-psr 21946 df-mvr 21947 df-mpl 21948 df-opsr 21950 df-evls 22115 df-psr1 22196 df-ply1 22198 df-evls1 22334 df-mon1 26184 df-irng 33698 |
This theorem is referenced by: irngss 33701 irngssv 33702 0ringirng 33703 irngnzply1lem 33704 irngnzply1 33705 irredminply 33721 rtelextdg2lem 33731 |
Copyright terms: Public domain | W3C validator |