Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elirng Structured version   Visualization version   GIF version

Theorem elirng 33736
Description: Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
elirng.r (𝜑𝑅 ∈ CRing)
elirng.s (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
elirng (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 )))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑂   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓   𝑓,𝑋   𝜑,𝑓
Allowed substitution hint:   0 (𝑓)

Proof of Theorem elirng
StepHypRef Expression
1 irngval.o . . . . . 6 𝑂 = (𝑅 evalSub1 𝑆)
2 irngval.u . . . . . 6 𝑈 = (𝑅s 𝑆)
3 irngval.b . . . . . 6 𝐵 = (Base‘𝑅)
4 irngval.0 . . . . . 6 0 = (0g𝑅)
5 elirng.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
65crngringd 20243 . . . . . 6 (𝜑𝑅 ∈ Ring)
7 elirng.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘𝑅))
83subrgss 20572 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
97, 8syl 17 . . . . . 6 (𝜑𝑆𝐵)
101, 2, 3, 4, 6, 9irngval 33735 . . . . 5 (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
1110eleq2d 2827 . . . 4 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ 𝑋 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 })))
12 eliun 4995 . . . 4 (𝑋 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 }))
1311, 12bitrdi 287 . . 3 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 })))
14 eqid 2737 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
15 eqid 2737 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
166adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑅 ∈ Ring)
173fvexi 6920 . . . . . . 7 𝐵 ∈ V
1817a1i 11 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝐵 ∈ V)
19 eqid 2737 . . . . . . . . . . 11 (Poly1𝑈) = (Poly1𝑈)
201, 3, 14, 2, 19evls1rhm 22326 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)))
215, 7, 20syl2anc 584 . . . . . . . . 9 (𝜑𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)))
22 eqid 2737 . . . . . . . . . 10 (Base‘(Poly1𝑈)) = (Base‘(Poly1𝑈))
2322, 15rhmf 20485 . . . . . . . . 9 (𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)) → 𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
2421, 23syl 17 . . . . . . . 8 (𝜑𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
2524adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
26 eqid 2737 . . . . . . . . 9 (Monic1p𝑈) = (Monic1p𝑈)
2719, 22, 26mon1pcl 26184 . . . . . . . 8 (𝑓 ∈ (Monic1p𝑈) → 𝑓 ∈ (Base‘(Poly1𝑈)))
2827adantl 481 . . . . . . 7 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑓 ∈ (Base‘(Poly1𝑈)))
2925, 28ffvelcdmd 7105 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑂𝑓) ∈ (Base‘(𝑅s 𝐵)))
3014, 3, 15, 16, 18, 29pwselbas 17534 . . . . 5 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑂𝑓):𝐵𝐵)
31 ffn 6736 . . . . 5 ((𝑂𝑓):𝐵𝐵 → (𝑂𝑓) Fn 𝐵)
32 fniniseg 7080 . . . . 5 ((𝑂𝑓) Fn 𝐵 → (𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ (𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3330, 31, 323syl 18 . . . 4 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ (𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3433rexbidva 3177 . . 3 (𝜑 → (∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3513, 34bitrd 279 . 2 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
36 r19.42v 3191 . 2 (∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 ) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 ))
3735, 36bitrdi 287 1 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wrex 3070  Vcvv 3480  wss 3951  {csn 4626   ciun 4991  ccnv 5684  cima 5688   Fn wfn 6556  wf 6557  cfv 6561  (class class class)co 7431  Basecbs 17247  s cress 17274  0gc0g 17484  s cpws 17491  Ringcrg 20230  CRingccrg 20231   RingHom crh 20469  SubRingcsubrg 20569  Poly1cpl1 22178   evalSub1 ces1 22317  Monic1pcmn1 26165   IntgRing cirng 33733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-lmod 20860  df-lss 20930  df-lsp 20970  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-psr1 22181  df-ply1 22183  df-evls1 22319  df-mon1 26170  df-irng 33734
This theorem is referenced by:  irngss  33737  irngssv  33738  0ringirng  33739  irngnzply1lem  33740  irngnzply1  33741  irredminply  33757  rtelextdg2lem  33767
  Copyright terms: Public domain W3C validator