| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elirng | Structured version Visualization version GIF version | ||
| Description: Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
| Ref | Expression |
|---|---|
| irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
| irngval.0 | ⊢ 0 = (0g‘𝑅) |
| elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| elirng | ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irngval.o | . . . . . 6 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 2 | irngval.u | . . . . . 6 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 3 | irngval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | irngval.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 5 | elirng.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 6 | 5 | crngringd 20131 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 8 | 3 | subrgss 20457 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 10 | 1, 2, 3, 4, 6, 9 | irngval 33652 | . . . . 5 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) |
| 11 | 10 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ 𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }))) |
| 12 | eliun 4945 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 })) | |
| 13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }))) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 16 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑅 ∈ Ring) |
| 17 | 3 | fvexi 6836 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝐵 ∈ V) |
| 19 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
| 20 | 1, 3, 14, 2, 19 | evls1rhm 22207 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
| 21 | 5, 7, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
| 22 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘𝑈)) | |
| 23 | 22, 15 | rhmf 20370 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 24 | 21, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 26 | eqid 2729 | . . . . . . . . 9 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
| 27 | 19, 22, 26 | mon1pcl 26048 | . . . . . . . 8 ⊢ (𝑓 ∈ (Monic1p‘𝑈) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
| 28 | 27 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
| 29 | 25, 28 | ffvelcdmd 7019 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓) ∈ (Base‘(𝑅 ↑s 𝐵))) |
| 30 | 14, 3, 15, 16, 18, 29 | pwselbas 17393 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓):𝐵⟶𝐵) |
| 31 | ffn 6652 | . . . . 5 ⊢ ((𝑂‘𝑓):𝐵⟶𝐵 → (𝑂‘𝑓) Fn 𝐵) | |
| 32 | fniniseg 6994 | . . . . 5 ⊢ ((𝑂‘𝑓) Fn 𝐵 → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) | |
| 33 | 30, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 34 | 33 | rexbidva 3151 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 35 | 13, 34 | bitrd 279 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 36 | r19.42v 3161 | . 2 ⊢ (∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 )) | |
| 37 | 35, 36 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3436 ⊆ wss 3903 {csn 4577 ∪ ciun 4941 ◡ccnv 5618 “ cima 5622 Fn wfn 6477 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 0gc0g 17343 ↑s cpws 17350 Ringcrg 20118 CRingccrg 20119 RingHom crh 20354 SubRingcsubrg 20454 Poly1cpl1 22059 evalSub1 ces1 22198 Monic1pcmn1 26029 IntgRing cirng 33650 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-ofr 7614 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-sbg 18817 df-mulg 18947 df-subg 19002 df-ghm 19092 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20765 df-lss 20835 df-lsp 20875 df-assa 21760 df-asp 21761 df-ascl 21762 df-psr 21816 df-mvr 21817 df-mpl 21818 df-opsr 21820 df-evls 21979 df-psr1 22062 df-ply1 22064 df-evls1 22200 df-mon1 26034 df-irng 33651 |
| This theorem is referenced by: irngss 33654 irngssv 33655 0ringirng 33656 irngnzply1lem 33657 irngnzply1 33658 minplyelirng 33682 irredminply 33683 rtelextdg2lem 33693 |
| Copyright terms: Public domain | W3C validator |