| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elirng | Structured version Visualization version GIF version | ||
| Description: Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
| Ref | Expression |
|---|---|
| irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
| irngval.0 | ⊢ 0 = (0g‘𝑅) |
| elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| elirng | ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irngval.o | . . . . . 6 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 2 | irngval.u | . . . . . 6 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 3 | irngval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | irngval.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 5 | elirng.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 6 | 5 | crngringd 20204 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 8 | 3 | subrgss 20530 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 10 | 1, 2, 3, 4, 6, 9 | irngval 33672 | . . . . 5 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) |
| 11 | 10 | eleq2d 2820 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ 𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }))) |
| 12 | eliun 4971 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 })) | |
| 13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }))) |
| 14 | eqid 2735 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 15 | eqid 2735 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 16 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑅 ∈ Ring) |
| 17 | 3 | fvexi 6889 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝐵 ∈ V) |
| 19 | eqid 2735 | . . . . . . . . . . 11 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
| 20 | 1, 3, 14, 2, 19 | evls1rhm 22258 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
| 21 | 5, 7, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
| 22 | eqid 2735 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘𝑈)) | |
| 23 | 22, 15 | rhmf 20443 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 24 | 21, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 26 | eqid 2735 | . . . . . . . . 9 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
| 27 | 19, 22, 26 | mon1pcl 26100 | . . . . . . . 8 ⊢ (𝑓 ∈ (Monic1p‘𝑈) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
| 28 | 27 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
| 29 | 25, 28 | ffvelcdmd 7074 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓) ∈ (Base‘(𝑅 ↑s 𝐵))) |
| 30 | 14, 3, 15, 16, 18, 29 | pwselbas 17501 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓):𝐵⟶𝐵) |
| 31 | ffn 6705 | . . . . 5 ⊢ ((𝑂‘𝑓):𝐵⟶𝐵 → (𝑂‘𝑓) Fn 𝐵) | |
| 32 | fniniseg 7049 | . . . . 5 ⊢ ((𝑂‘𝑓) Fn 𝐵 → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) | |
| 33 | 30, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 34 | 33 | rexbidva 3162 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 35 | 13, 34 | bitrd 279 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 36 | r19.42v 3176 | . 2 ⊢ (∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 )) | |
| 37 | 35, 36 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 {csn 4601 ∪ ciun 4967 ◡ccnv 5653 “ cima 5657 Fn wfn 6525 ⟶wf 6526 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 ↾s cress 17249 0gc0g 17451 ↑s cpws 17458 Ringcrg 20191 CRingccrg 20192 RingHom crh 20427 SubRingcsubrg 20527 Poly1cpl1 22110 evalSub1 ces1 22249 Monic1pcmn1 26081 IntgRing cirng 33670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-isom 6539 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7669 df-ofr 7670 df-om 7860 df-1st 7986 df-2nd 7987 df-supp 8158 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-2o 8479 df-er 8717 df-map 8840 df-pm 8841 df-ixp 8910 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-fsupp 9372 df-sup 9452 df-oi 9522 df-card 9951 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-fzo 13670 df-seq 14018 df-hash 14347 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-ip 17287 df-tset 17288 df-ple 17289 df-ds 17291 df-hom 17293 df-cco 17294 df-0g 17453 df-gsum 17454 df-prds 17459 df-pws 17461 df-mre 17596 df-mrc 17597 df-acs 17599 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-mhm 18759 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-mulg 19049 df-subg 19104 df-ghm 19194 df-cntz 19298 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-srg 20145 df-ring 20193 df-cring 20194 df-rhm 20430 df-subrng 20504 df-subrg 20528 df-lmod 20817 df-lss 20887 df-lsp 20927 df-assa 21811 df-asp 21812 df-ascl 21813 df-psr 21867 df-mvr 21868 df-mpl 21869 df-opsr 21871 df-evls 22030 df-psr1 22113 df-ply1 22115 df-evls1 22251 df-mon1 26086 df-irng 33671 |
| This theorem is referenced by: irngss 33674 irngssv 33675 0ringirng 33676 irngnzply1lem 33677 irngnzply1 33678 minplyelirng 33695 irredminply 33696 rtelextdg2lem 33706 |
| Copyright terms: Public domain | W3C validator |