Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elirng Structured version   Visualization version   GIF version

Theorem elirng 33700
Description: Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
elirng.r (𝜑𝑅 ∈ CRing)
elirng.s (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
elirng (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 )))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑂   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓   𝑓,𝑋   𝜑,𝑓
Allowed substitution hint:   0 (𝑓)

Proof of Theorem elirng
StepHypRef Expression
1 irngval.o . . . . . 6 𝑂 = (𝑅 evalSub1 𝑆)
2 irngval.u . . . . . 6 𝑈 = (𝑅s 𝑆)
3 irngval.b . . . . . 6 𝐵 = (Base‘𝑅)
4 irngval.0 . . . . . 6 0 = (0g𝑅)
5 elirng.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
65crngringd 20263 . . . . . 6 (𝜑𝑅 ∈ Ring)
7 elirng.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘𝑅))
83subrgss 20588 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
97, 8syl 17 . . . . . 6 (𝜑𝑆𝐵)
101, 2, 3, 4, 6, 9irngval 33699 . . . . 5 (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
1110eleq2d 2824 . . . 4 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ 𝑋 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 })))
12 eliun 4999 . . . 4 (𝑋 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 }))
1311, 12bitrdi 287 . . 3 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 })))
14 eqid 2734 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
15 eqid 2734 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
166adantr 480 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑅 ∈ Ring)
173fvexi 6920 . . . . . . 7 𝐵 ∈ V
1817a1i 11 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝐵 ∈ V)
19 eqid 2734 . . . . . . . . . . 11 (Poly1𝑈) = (Poly1𝑈)
201, 3, 14, 2, 19evls1rhm 22341 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)))
215, 7, 20syl2anc 584 . . . . . . . . 9 (𝜑𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)))
22 eqid 2734 . . . . . . . . . 10 (Base‘(Poly1𝑈)) = (Base‘(Poly1𝑈))
2322, 15rhmf 20501 . . . . . . . . 9 (𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)) → 𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
2421, 23syl 17 . . . . . . . 8 (𝜑𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
2524adantr 480 . . . . . . 7 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
26 eqid 2734 . . . . . . . . 9 (Monic1p𝑈) = (Monic1p𝑈)
2719, 22, 26mon1pcl 26198 . . . . . . . 8 (𝑓 ∈ (Monic1p𝑈) → 𝑓 ∈ (Base‘(Poly1𝑈)))
2827adantl 481 . . . . . . 7 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑓 ∈ (Base‘(Poly1𝑈)))
2925, 28ffvelcdmd 7104 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑂𝑓) ∈ (Base‘(𝑅s 𝐵)))
3014, 3, 15, 16, 18, 29pwselbas 17535 . . . . 5 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑂𝑓):𝐵𝐵)
31 ffn 6736 . . . . 5 ((𝑂𝑓):𝐵𝐵 → (𝑂𝑓) Fn 𝐵)
32 fniniseg 7079 . . . . 5 ((𝑂𝑓) Fn 𝐵 → (𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ (𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3330, 31, 323syl 18 . . . 4 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ (𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3433rexbidva 3174 . . 3 (𝜑 → (∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3513, 34bitrd 279 . 2 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
36 r19.42v 3188 . 2 (∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 ) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 ))
3735, 36bitrdi 287 1 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  wcel 2105  wrex 3067  Vcvv 3477  wss 3962  {csn 4630   ciun 4995  ccnv 5687  cima 5691   Fn wfn 6557  wf 6558  cfv 6562  (class class class)co 7430  Basecbs 17244  s cress 17273  0gc0g 17485  s cpws 17492  Ringcrg 20250  CRingccrg 20251   RingHom crh 20485  SubRingcsubrg 20585  Poly1cpl1 22193   evalSub1 ces1 22332  Monic1pcmn1 26179   IntgRing cirng 33697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-srg 20204  df-ring 20252  df-cring 20253  df-rhm 20488  df-subrng 20562  df-subrg 20586  df-lmod 20876  df-lss 20947  df-lsp 20987  df-assa 21890  df-asp 21891  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-evls 22115  df-psr1 22196  df-ply1 22198  df-evls1 22334  df-mon1 26184  df-irng 33698
This theorem is referenced by:  irngss  33701  irngssv  33702  0ringirng  33703  irngnzply1lem  33704  irngnzply1  33705  irredminply  33721  rtelextdg2lem  33731
  Copyright terms: Public domain W3C validator