Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elirng Structured version   Visualization version   GIF version

Theorem elirng 32652
Description: Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.)
Hypotheses
Ref Expression
irngval.o 𝑂 = (𝑅 evalSub1 𝑆)
irngval.u 𝑈 = (𝑅s 𝑆)
irngval.b 𝐵 = (Base‘𝑅)
irngval.0 0 = (0g𝑅)
elirng.r (𝜑𝑅 ∈ CRing)
elirng.s (𝜑𝑆 ∈ (SubRing‘𝑅))
Assertion
Ref Expression
elirng (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 )))
Distinct variable groups:   𝐵,𝑓   𝑓,𝑂   𝑅,𝑓   𝑆,𝑓   𝑈,𝑓   𝑓,𝑋   𝜑,𝑓
Allowed substitution hint:   0 (𝑓)

Proof of Theorem elirng
StepHypRef Expression
1 irngval.o . . . . . 6 𝑂 = (𝑅 evalSub1 𝑆)
2 irngval.u . . . . . 6 𝑈 = (𝑅s 𝑆)
3 irngval.b . . . . . 6 𝐵 = (Base‘𝑅)
4 irngval.0 . . . . . 6 0 = (0g𝑅)
5 elirng.r . . . . . . 7 (𝜑𝑅 ∈ CRing)
65crngringd 20029 . . . . . 6 (𝜑𝑅 ∈ Ring)
7 elirng.s . . . . . . 7 (𝜑𝑆 ∈ (SubRing‘𝑅))
83subrgss 20315 . . . . . . 7 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
97, 8syl 17 . . . . . 6 (𝜑𝑆𝐵)
101, 2, 3, 4, 6, 9irngval 32651 . . . . 5 (𝜑 → (𝑅 IntgRing 𝑆) = 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }))
1110eleq2d 2819 . . . 4 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ 𝑋 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 })))
12 eliun 4995 . . . 4 (𝑋 𝑓 ∈ (Monic1p𝑈)((𝑂𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 }))
1311, 12bitrdi 286 . . 3 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 })))
14 eqid 2732 . . . . . 6 (𝑅s 𝐵) = (𝑅s 𝐵)
15 eqid 2732 . . . . . 6 (Base‘(𝑅s 𝐵)) = (Base‘(𝑅s 𝐵))
166adantr 481 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑅 ∈ Ring)
173fvexi 6893 . . . . . . 7 𝐵 ∈ V
1817a1i 11 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝐵 ∈ V)
19 eqid 2732 . . . . . . . . . . 11 (Poly1𝑈) = (Poly1𝑈)
201, 3, 14, 2, 19evls1rhm 21772 . . . . . . . . . 10 ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)))
215, 7, 20syl2anc 584 . . . . . . . . 9 (𝜑𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)))
22 eqid 2732 . . . . . . . . . 10 (Base‘(Poly1𝑈)) = (Base‘(Poly1𝑈))
2322, 15rhmf 20215 . . . . . . . . 9 (𝑂 ∈ ((Poly1𝑈) RingHom (𝑅s 𝐵)) → 𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
2421, 23syl 17 . . . . . . . 8 (𝜑𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
2524adantr 481 . . . . . . 7 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑂:(Base‘(Poly1𝑈))⟶(Base‘(𝑅s 𝐵)))
26 eqid 2732 . . . . . . . . 9 (Monic1p𝑈) = (Monic1p𝑈)
2719, 22, 26mon1pcl 25593 . . . . . . . 8 (𝑓 ∈ (Monic1p𝑈) → 𝑓 ∈ (Base‘(Poly1𝑈)))
2827adantl 482 . . . . . . 7 ((𝜑𝑓 ∈ (Monic1p𝑈)) → 𝑓 ∈ (Base‘(Poly1𝑈)))
2925, 28ffvelcdmd 7073 . . . . . 6 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑂𝑓) ∈ (Base‘(𝑅s 𝐵)))
3014, 3, 15, 16, 18, 29pwselbas 17419 . . . . 5 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑂𝑓):𝐵𝐵)
31 ffn 6705 . . . . 5 ((𝑂𝑓):𝐵𝐵 → (𝑂𝑓) Fn 𝐵)
32 fniniseg 7047 . . . . 5 ((𝑂𝑓) Fn 𝐵 → (𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ (𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3330, 31, 323syl 18 . . . 4 ((𝜑𝑓 ∈ (Monic1p𝑈)) → (𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ (𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3433rexbidva 3176 . . 3 (𝜑 → (∃𝑓 ∈ (Monic1p𝑈)𝑋 ∈ ((𝑂𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
3513, 34bitrd 278 . 2 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 )))
36 r19.42v 3190 . 2 (∃𝑓 ∈ (Monic1p𝑈)(𝑋𝐵 ∧ ((𝑂𝑓)‘𝑋) = 0 ) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 ))
3735, 36bitrdi 286 1 (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋𝐵 ∧ ∃𝑓 ∈ (Monic1p𝑈)((𝑂𝑓)‘𝑋) = 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wrex 3070  Vcvv 3474  wss 3945  {csn 4623   ciun 4991  ccnv 5669  cima 5673   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7394  Basecbs 17128  s cress 17157  0gc0g 17369  s cpws 17376  Ringcrg 20016  CRingccrg 20017   RingHom crh 20200  SubRingcsubrg 20310  Poly1cpl1 21632   evalSub1 ces1 21763  Monic1pcmn1 25574   IntgRing cirng 32649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-ofr 7655  df-om 7840  df-1st 7959  df-2nd 7960  df-supp 8131  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-er 8688  df-map 8807  df-pm 8808  df-ixp 8877  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-fsupp 9347  df-sup 9421  df-oi 9489  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-9 12266  df-n0 12457  df-z 12543  df-dec 12662  df-uz 12807  df-fz 13469  df-fzo 13612  df-seq 13951  df-hash 14275  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-tset 17200  df-ple 17201  df-ds 17203  df-hom 17205  df-cco 17206  df-0g 17371  df-gsum 17372  df-prds 17377  df-pws 17379  df-mre 17514  df-mrc 17515  df-acs 17517  df-mgm 18545  df-sgrp 18594  df-mnd 18605  df-mhm 18649  df-submnd 18650  df-grp 18799  df-minusg 18800  df-sbg 18801  df-mulg 18925  df-subg 18977  df-ghm 19058  df-cntz 19149  df-cmn 19616  df-abl 19617  df-mgp 19949  df-ur 19966  df-srg 19970  df-ring 20018  df-cring 20019  df-rnghom 20203  df-subrg 20312  df-lmod 20424  df-lss 20494  df-lsp 20534  df-assa 21343  df-asp 21344  df-ascl 21345  df-psr 21395  df-mvr 21396  df-mpl 21397  df-opsr 21399  df-evls 21566  df-psr1 21635  df-ply1 21637  df-evls1 21765  df-mon1 25579  df-irng 32650
This theorem is referenced by:  irngss  32653  irngssv  32654  0ringirng  32655  irngnzply1lem  32656  irngnzply1  32657
  Copyright terms: Public domain W3C validator