| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elirng | Structured version Visualization version GIF version | ||
| Description: Property for an element 𝑋 of a field 𝑅 to be integral over a subring 𝑆. (Contributed by Thierry Arnoux, 28-Jan-2025.) |
| Ref | Expression |
|---|---|
| irngval.o | ⊢ 𝑂 = (𝑅 evalSub1 𝑆) |
| irngval.u | ⊢ 𝑈 = (𝑅 ↾s 𝑆) |
| irngval.b | ⊢ 𝐵 = (Base‘𝑅) |
| irngval.0 | ⊢ 0 = (0g‘𝑅) |
| elirng.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| elirng.s | ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) |
| Ref | Expression |
|---|---|
| elirng | ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irngval.o | . . . . . 6 ⊢ 𝑂 = (𝑅 evalSub1 𝑆) | |
| 2 | irngval.u | . . . . . 6 ⊢ 𝑈 = (𝑅 ↾s 𝑆) | |
| 3 | irngval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | irngval.0 | . . . . . 6 ⊢ 0 = (0g‘𝑅) | |
| 5 | elirng.r | . . . . . . 7 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 6 | 5 | crngringd 20131 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 7 | elirng.s | . . . . . . 7 ⊢ (𝜑 → 𝑆 ∈ (SubRing‘𝑅)) | |
| 8 | 3 | subrgss 20457 | . . . . . . 7 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 9 | 7, 8 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| 10 | 1, 2, 3, 4, 6, 9 | irngval 33653 | . . . . 5 ⊢ (𝜑 → (𝑅 IntgRing 𝑆) = ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 })) |
| 11 | 10 | eleq2d 2814 | . . . 4 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ 𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }))) |
| 12 | eliun 4955 | . . . 4 ⊢ (𝑋 ∈ ∪ 𝑓 ∈ (Monic1p‘𝑈)(◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 })) | |
| 13 | 11, 12 | bitrdi 287 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }))) |
| 14 | eqid 2729 | . . . . . 6 ⊢ (𝑅 ↑s 𝐵) = (𝑅 ↑s 𝐵) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ (Base‘(𝑅 ↑s 𝐵)) = (Base‘(𝑅 ↑s 𝐵)) | |
| 16 | 6 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑅 ∈ Ring) |
| 17 | 3 | fvexi 6854 | . . . . . . 7 ⊢ 𝐵 ∈ V |
| 18 | 17 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝐵 ∈ V) |
| 19 | eqid 2729 | . . . . . . . . . . 11 ⊢ (Poly1‘𝑈) = (Poly1‘𝑈) | |
| 20 | 1, 3, 14, 2, 19 | evls1rhm 22185 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ∈ (SubRing‘𝑅)) → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
| 21 | 5, 7, 20 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → 𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵))) |
| 22 | eqid 2729 | . . . . . . . . . 10 ⊢ (Base‘(Poly1‘𝑈)) = (Base‘(Poly1‘𝑈)) | |
| 23 | 22, 15 | rhmf 20370 | . . . . . . . . 9 ⊢ (𝑂 ∈ ((Poly1‘𝑈) RingHom (𝑅 ↑s 𝐵)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 24 | 21, 23 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 25 | 24 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑂:(Base‘(Poly1‘𝑈))⟶(Base‘(𝑅 ↑s 𝐵))) |
| 26 | eqid 2729 | . . . . . . . . 9 ⊢ (Monic1p‘𝑈) = (Monic1p‘𝑈) | |
| 27 | 19, 22, 26 | mon1pcl 26026 | . . . . . . . 8 ⊢ (𝑓 ∈ (Monic1p‘𝑈) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
| 28 | 27 | adantl 481 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → 𝑓 ∈ (Base‘(Poly1‘𝑈))) |
| 29 | 25, 28 | ffvelcdmd 7039 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓) ∈ (Base‘(𝑅 ↑s 𝐵))) |
| 30 | 14, 3, 15, 16, 18, 29 | pwselbas 17428 | . . . . 5 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑂‘𝑓):𝐵⟶𝐵) |
| 31 | ffn 6670 | . . . . 5 ⊢ ((𝑂‘𝑓):𝐵⟶𝐵 → (𝑂‘𝑓) Fn 𝐵) | |
| 32 | fniniseg 7014 | . . . . 5 ⊢ ((𝑂‘𝑓) Fn 𝐵 → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) | |
| 33 | 30, 31, 32 | 3syl 18 | . . . 4 ⊢ ((𝜑 ∧ 𝑓 ∈ (Monic1p‘𝑈)) → (𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 34 | 33 | rexbidva 3155 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Monic1p‘𝑈)𝑋 ∈ (◡(𝑂‘𝑓) “ { 0 }) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 35 | 13, 34 | bitrd 279 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ ∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ))) |
| 36 | r19.42v 3167 | . 2 ⊢ (∃𝑓 ∈ (Monic1p‘𝑈)(𝑋 ∈ 𝐵 ∧ ((𝑂‘𝑓)‘𝑋) = 0 ) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 )) | |
| 37 | 35, 36 | bitrdi 287 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑅 IntgRing 𝑆) ↔ (𝑋 ∈ 𝐵 ∧ ∃𝑓 ∈ (Monic1p‘𝑈)((𝑂‘𝑓)‘𝑋) = 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 Vcvv 3444 ⊆ wss 3911 {csn 4585 ∪ ciun 4951 ◡ccnv 5630 “ cima 5634 Fn wfn 6494 ⟶wf 6495 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 ↾s cress 17176 0gc0g 17378 ↑s cpws 17385 Ringcrg 20118 CRingccrg 20119 RingHom crh 20354 SubRingcsubrg 20454 Poly1cpl1 22037 evalSub1 ces1 22176 Monic1pcmn1 26007 IntgRing cirng 33651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-ofr 7634 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-pm 8779 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-lmod 20744 df-lss 20814 df-lsp 20854 df-assa 21738 df-asp 21739 df-ascl 21740 df-psr 21794 df-mvr 21795 df-mpl 21796 df-opsr 21798 df-evls 21957 df-psr1 22040 df-ply1 22042 df-evls1 22178 df-mon1 26012 df-irng 33652 |
| This theorem is referenced by: irngss 33655 irngssv 33656 0ringirng 33657 irngnzply1lem 33658 irngnzply1 33659 minplyelirng 33678 irredminply 33679 rtelextdg2lem 33689 |
| Copyright terms: Public domain | W3C validator |