Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualgrplem Structured version   Visualization version   GIF version

Theorem ldualgrplem 37607
Description: Lemma for ldualgrp 37608. (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
ldualgrp.d 𝐷 = (LDual‘𝑊)
ldualgrp.w (𝜑𝑊 ∈ LMod)
ldualgrp.v 𝑉 = (Base‘𝑊)
ldualgrp.p + = ∘f (+g𝑊)
ldualgrp.f 𝐹 = (LFnl‘𝑊)
ldualgrp.r 𝑅 = (Scalar‘𝑊)
ldualgrp.k 𝐾 = (Base‘𝑅)
ldualgrp.t × = (.r𝑅)
ldualgrp.o 𝑂 = (oppr𝑅)
ldualgrp.s · = ( ·𝑠𝐷)
Assertion
Ref Expression
ldualgrplem (𝜑𝐷 ∈ Grp)

Proof of Theorem ldualgrplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ldualgrp.f . . . 4 𝐹 = (LFnl‘𝑊)
2 ldualgrp.d . . . 4 𝐷 = (LDual‘𝑊)
3 eqid 2736 . . . 4 (Base‘𝐷) = (Base‘𝐷)
4 ldualgrp.w . . . 4 (𝜑𝑊 ∈ LMod)
51, 2, 3, 4ldualvbase 37588 . . 3 (𝜑 → (Base‘𝐷) = 𝐹)
65eqcomd 2742 . 2 (𝜑𝐹 = (Base‘𝐷))
7 eqidd 2737 . 2 (𝜑 → (+g𝐷) = (+g𝐷))
8 eqid 2736 . . 3 (+g𝐷) = (+g𝐷)
943ad2ant1 1133 . . 3 ((𝜑𝑥𝐹𝑦𝐹) → 𝑊 ∈ LMod)
10 simp2 1137 . . 3 ((𝜑𝑥𝐹𝑦𝐹) → 𝑥𝐹)
11 simp3 1138 . . 3 ((𝜑𝑥𝐹𝑦𝐹) → 𝑦𝐹)
121, 2, 8, 9, 10, 11ldualvaddcl 37592 . 2 ((𝜑𝑥𝐹𝑦𝐹) → (𝑥(+g𝐷)𝑦) ∈ 𝐹)
13 ldualgrp.r . . . . 5 𝑅 = (Scalar‘𝑊)
14 eqid 2736 . . . . 5 (+g𝑅) = (+g𝑅)
154adantr 481 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑊 ∈ LMod)
16 simpr2 1195 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑦𝐹)
17 simpr3 1196 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑧𝐹)
181, 13, 14, 2, 8, 15, 16, 17ldualvadd 37591 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑦(+g𝐷)𝑧) = (𝑦f (+g𝑅)𝑧))
1918oveq2d 7373 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥f (+g𝑅)(𝑦(+g𝐷)𝑧)) = (𝑥f (+g𝑅)(𝑦f (+g𝑅)𝑧)))
20 simpr1 1194 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → 𝑥𝐹)
211, 2, 8, 15, 16, 17ldualvaddcl 37592 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑦(+g𝐷)𝑧) ∈ 𝐹)
221, 13, 14, 2, 8, 15, 20, 21ldualvadd 37591 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥(+g𝐷)(𝑦(+g𝐷)𝑧)) = (𝑥f (+g𝑅)(𝑦(+g𝐷)𝑧)))
231, 2, 8, 15, 20, 16ldualvaddcl 37592 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥(+g𝐷)𝑦) ∈ 𝐹)
241, 13, 14, 2, 8, 15, 23, 17ldualvadd 37591 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦)(+g𝐷)𝑧) = ((𝑥(+g𝐷)𝑦) ∘f (+g𝑅)𝑧))
251, 13, 14, 2, 8, 15, 20, 16ldualvadd 37591 . . . . 5 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → (𝑥(+g𝐷)𝑦) = (𝑥f (+g𝑅)𝑦))
2625oveq1d 7372 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦) ∘f (+g𝑅)𝑧) = ((𝑥f (+g𝑅)𝑦) ∘f (+g𝑅)𝑧))
2713, 14, 1, 15, 20, 16, 17lfladdass 37535 . . . 4 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥f (+g𝑅)𝑦) ∘f (+g𝑅)𝑧) = (𝑥f (+g𝑅)(𝑦f (+g𝑅)𝑧)))
2824, 26, 273eqtrd 2780 . . 3 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦)(+g𝐷)𝑧) = (𝑥f (+g𝑅)(𝑦f (+g𝑅)𝑧)))
2919, 22, 283eqtr4rd 2787 . 2 ((𝜑 ∧ (𝑥𝐹𝑦𝐹𝑧𝐹)) → ((𝑥(+g𝐷)𝑦)(+g𝐷)𝑧) = (𝑥(+g𝐷)(𝑦(+g𝐷)𝑧)))
30 eqid 2736 . . . 4 (0g𝑅) = (0g𝑅)
31 ldualgrp.v . . . 4 𝑉 = (Base‘𝑊)
3213, 30, 31, 1lfl0f 37531 . . 3 (𝑊 ∈ LMod → (𝑉 × {(0g𝑅)}) ∈ 𝐹)
334, 32syl 17 . 2 (𝜑 → (𝑉 × {(0g𝑅)}) ∈ 𝐹)
344adantr 481 . . . 4 ((𝜑𝑥𝐹) → 𝑊 ∈ LMod)
3533adantr 481 . . . 4 ((𝜑𝑥𝐹) → (𝑉 × {(0g𝑅)}) ∈ 𝐹)
36 simpr 485 . . . 4 ((𝜑𝑥𝐹) → 𝑥𝐹)
371, 13, 14, 2, 8, 34, 35, 36ldualvadd 37591 . . 3 ((𝜑𝑥𝐹) → ((𝑉 × {(0g𝑅)})(+g𝐷)𝑥) = ((𝑉 × {(0g𝑅)}) ∘f (+g𝑅)𝑥))
3831, 13, 14, 30, 1, 34, 36lfladd0l 37536 . . 3 ((𝜑𝑥𝐹) → ((𝑉 × {(0g𝑅)}) ∘f (+g𝑅)𝑥) = 𝑥)
3937, 38eqtrd 2776 . 2 ((𝜑𝑥𝐹) → ((𝑉 × {(0g𝑅)})(+g𝐷)𝑥) = 𝑥)
40 eqid 2736 . . 3 (invg𝑅) = (invg𝑅)
41 eqid 2736 . . 3 (𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) = (𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧)))
4231, 13, 40, 41, 1, 34, 36lflnegcl 37537 . 2 ((𝜑𝑥𝐹) → (𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) ∈ 𝐹)
431, 13, 14, 2, 8, 34, 42, 36ldualvadd 37591 . . 3 ((𝜑𝑥𝐹) → ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧)))(+g𝐷)𝑥) = ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) ∘f (+g𝑅)𝑥))
4431, 13, 40, 41, 1, 34, 36, 14, 30lflnegl 37538 . . 3 ((𝜑𝑥𝐹) → ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧))) ∘f (+g𝑅)𝑥) = (𝑉 × {(0g𝑅)}))
4543, 44eqtrd 2776 . 2 ((𝜑𝑥𝐹) → ((𝑧𝑉 ↦ ((invg𝑅)‘(𝑥𝑧)))(+g𝐷)𝑥) = (𝑉 × {(0g𝑅)}))
466, 7, 12, 29, 33, 39, 42, 45isgrpd 18772 1 (𝜑𝐷 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {csn 4586  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  f cof 7615  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  Grpcgrp 18748  invgcminusg 18749  opprcoppr 20048  LModclmod 20322  LFnlclfn 37519  LDualcld 37585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-sca 17149  df-vsca 17150  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-minusg 18752  df-sbg 18753  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324  df-lfl 37520  df-ldual 37586
This theorem is referenced by:  ldualgrp  37608
  Copyright terms: Public domain W3C validator