Step | Hyp | Ref
| Expression |
1 | | ldualgrp.f |
. . . 4
β’ πΉ = (LFnlβπ) |
2 | | ldualgrp.d |
. . . 4
β’ π· = (LDualβπ) |
3 | | eqid 2732 |
. . . 4
β’
(Baseβπ·) =
(Baseβπ·) |
4 | | ldualgrp.w |
. . . 4
β’ (π β π β LMod) |
5 | 1, 2, 3, 4 | ldualvbase 37984 |
. . 3
β’ (π β (Baseβπ·) = πΉ) |
6 | 5 | eqcomd 2738 |
. 2
β’ (π β πΉ = (Baseβπ·)) |
7 | | eqidd 2733 |
. 2
β’ (π β (+gβπ·) = (+gβπ·)) |
8 | | eqid 2732 |
. . 3
β’
(+gβπ·) = (+gβπ·) |
9 | 4 | 3ad2ant1 1133 |
. . 3
β’ ((π β§ π₯ β πΉ β§ π¦ β πΉ) β π β LMod) |
10 | | simp2 1137 |
. . 3
β’ ((π β§ π₯ β πΉ β§ π¦ β πΉ) β π₯ β πΉ) |
11 | | simp3 1138 |
. . 3
β’ ((π β§ π₯ β πΉ β§ π¦ β πΉ) β π¦ β πΉ) |
12 | 1, 2, 8, 9, 10, 11 | ldualvaddcl 37988 |
. 2
β’ ((π β§ π₯ β πΉ β§ π¦ β πΉ) β (π₯(+gβπ·)π¦) β πΉ) |
13 | | ldualgrp.r |
. . . . 5
β’ π
= (Scalarβπ) |
14 | | eqid 2732 |
. . . . 5
β’
(+gβπ
) = (+gβπ
) |
15 | 4 | adantr 481 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β π β LMod) |
16 | | simpr2 1195 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β π¦ β πΉ) |
17 | | simpr3 1196 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β π§ β πΉ) |
18 | 1, 13, 14, 2, 8, 15, 16, 17 | ldualvadd 37987 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β (π¦(+gβπ·)π§) = (π¦ βf
(+gβπ
)π§)) |
19 | 18 | oveq2d 7421 |
. . 3
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β (π₯ βf
(+gβπ
)(π¦(+gβπ·)π§)) = (π₯ βf
(+gβπ
)(π¦ βf
(+gβπ
)π§))) |
20 | | simpr1 1194 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β π₯ β πΉ) |
21 | 1, 2, 8, 15, 16, 17 | ldualvaddcl 37988 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β (π¦(+gβπ·)π§) β πΉ) |
22 | 1, 13, 14, 2, 8, 15, 20, 21 | ldualvadd 37987 |
. . 3
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β (π₯(+gβπ·)(π¦(+gβπ·)π§)) = (π₯ βf
(+gβπ
)(π¦(+gβπ·)π§))) |
23 | 1, 2, 8, 15, 20, 16 | ldualvaddcl 37988 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β (π₯(+gβπ·)π¦) β πΉ) |
24 | 1, 13, 14, 2, 8, 15, 23, 17 | ldualvadd 37987 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β ((π₯(+gβπ·)π¦)(+gβπ·)π§) = ((π₯(+gβπ·)π¦) βf
(+gβπ
)π§)) |
25 | 1, 13, 14, 2, 8, 15, 20, 16 | ldualvadd 37987 |
. . . . 5
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β (π₯(+gβπ·)π¦) = (π₯ βf
(+gβπ
)π¦)) |
26 | 25 | oveq1d 7420 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β ((π₯(+gβπ·)π¦) βf
(+gβπ
)π§) = ((π₯ βf
(+gβπ
)π¦) βf
(+gβπ
)π§)) |
27 | 13, 14, 1, 15, 20, 16, 17 | lfladdass 37931 |
. . . 4
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β ((π₯ βf
(+gβπ
)π¦) βf
(+gβπ
)π§) = (π₯ βf
(+gβπ
)(π¦ βf
(+gβπ
)π§))) |
28 | 24, 26, 27 | 3eqtrd 2776 |
. . 3
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β ((π₯(+gβπ·)π¦)(+gβπ·)π§) = (π₯ βf
(+gβπ
)(π¦ βf
(+gβπ
)π§))) |
29 | 19, 22, 28 | 3eqtr4rd 2783 |
. 2
β’ ((π β§ (π₯ β πΉ β§ π¦ β πΉ β§ π§ β πΉ)) β ((π₯(+gβπ·)π¦)(+gβπ·)π§) = (π₯(+gβπ·)(π¦(+gβπ·)π§))) |
30 | | eqid 2732 |
. . . 4
β’
(0gβπ
) = (0gβπ
) |
31 | | ldualgrp.v |
. . . 4
β’ π = (Baseβπ) |
32 | 13, 30, 31, 1 | lfl0f 37927 |
. . 3
β’ (π β LMod β (π Γ
{(0gβπ
)})
β πΉ) |
33 | 4, 32 | syl 17 |
. 2
β’ (π β (π Γ {(0gβπ
)}) β πΉ) |
34 | 4 | adantr 481 |
. . . 4
β’ ((π β§ π₯ β πΉ) β π β LMod) |
35 | 33 | adantr 481 |
. . . 4
β’ ((π β§ π₯ β πΉ) β (π Γ {(0gβπ
)}) β πΉ) |
36 | | simpr 485 |
. . . 4
β’ ((π β§ π₯ β πΉ) β π₯ β πΉ) |
37 | 1, 13, 14, 2, 8, 34, 35, 36 | ldualvadd 37987 |
. . 3
β’ ((π β§ π₯ β πΉ) β ((π Γ {(0gβπ
)})(+gβπ·)π₯) = ((π Γ {(0gβπ
)}) βf
(+gβπ
)π₯)) |
38 | 31, 13, 14, 30, 1, 34, 36 | lfladd0l 37932 |
. . 3
β’ ((π β§ π₯ β πΉ) β ((π Γ {(0gβπ
)}) βf
(+gβπ
)π₯) = π₯) |
39 | 37, 38 | eqtrd 2772 |
. 2
β’ ((π β§ π₯ β πΉ) β ((π Γ {(0gβπ
)})(+gβπ·)π₯) = π₯) |
40 | | eqid 2732 |
. . 3
β’
(invgβπ
) = (invgβπ
) |
41 | | eqid 2732 |
. . 3
β’ (π§ β π β¦ ((invgβπ
)β(π₯βπ§))) = (π§ β π β¦ ((invgβπ
)β(π₯βπ§))) |
42 | 31, 13, 40, 41, 1, 34, 36 | lflnegcl 37933 |
. 2
β’ ((π β§ π₯ β πΉ) β (π§ β π β¦ ((invgβπ
)β(π₯βπ§))) β πΉ) |
43 | 1, 13, 14, 2, 8, 34, 42, 36 | ldualvadd 37987 |
. . 3
β’ ((π β§ π₯ β πΉ) β ((π§ β π β¦ ((invgβπ
)β(π₯βπ§)))(+gβπ·)π₯) = ((π§ β π β¦ ((invgβπ
)β(π₯βπ§))) βf
(+gβπ
)π₯)) |
44 | 31, 13, 40, 41, 1, 34, 36, 14, 30 | lflnegl 37934 |
. . 3
β’ ((π β§ π₯ β πΉ) β ((π§ β π β¦ ((invgβπ
)β(π₯βπ§))) βf
(+gβπ
)π₯) = (π Γ {(0gβπ
)})) |
45 | 43, 44 | eqtrd 2772 |
. 2
β’ ((π β§ π₯ β πΉ) β ((π§ β π β¦ ((invgβπ
)β(π₯βπ§)))(+gβπ·)π₯) = (π Γ {(0gβπ
)})) |
46 | 6, 7, 12, 29, 33, 39, 42, 45 | isgrpd 18840 |
1
β’ (π β π· β Grp) |