Step | Hyp | Ref
| Expression |
1 | | mendassa.a |
. . . 4
⊢ 𝐴 = (MEndo‘𝑀) |
2 | 1 | mendbas 41009 |
. . 3
⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) |
3 | 2 | a1i 11 |
. 2
⊢ (𝑀 ∈ LMod → (𝑀 LMHom 𝑀) = (Base‘𝐴)) |
4 | | eqidd 2739 |
. 2
⊢ (𝑀 ∈ LMod →
(+g‘𝐴) =
(+g‘𝐴)) |
5 | | eqidd 2739 |
. 2
⊢ (𝑀 ∈ LMod →
(.r‘𝐴) =
(.r‘𝐴)) |
6 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝑀) = (+g‘𝑀) |
7 | | eqid 2738 |
. . . . . 6
⊢
(+g‘𝐴) = (+g‘𝐴) |
8 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘f
(+g‘𝑀)𝑦)) |
9 | 6 | lmhmplusg 20306 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘f
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀)) |
10 | 8, 9 | eqeltrd 2839 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
11 | 10 | 3adant1 1129 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
12 | | simpr1 1193 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 LMHom 𝑀)) |
13 | | simpr2 1194 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀)) |
14 | 12, 13, 9 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘f
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀)) |
15 | | simpr3 1195 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀)) |
16 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . 5
⊢ (((𝑥 ∘f
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘f
(+g‘𝑀)𝑦)(+g‘𝐴)𝑧) = ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘f
(+g‘𝑀)𝑧)) |
17 | 14, 15, 16 | syl2anc 584 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘f
(+g‘𝑀)𝑦)(+g‘𝐴)𝑧) = ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘f
(+g‘𝑀)𝑧)) |
18 | 12, 13, 8 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘f
(+g‘𝑀)𝑦)) |
19 | 18 | oveq1d 7290 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(+g‘𝐴)𝑧) = ((𝑥 ∘f
(+g‘𝑀)𝑦)(+g‘𝐴)𝑧)) |
20 | 6 | lmhmplusg 20306 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦 ∘f
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) |
21 | 13, 15, 20 | syl2anc 584 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘f
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) |
22 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘f
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)(𝑦 ∘f
(+g‘𝑀)𝑧)) = (𝑥 ∘f
(+g‘𝑀)(𝑦 ∘f
(+g‘𝑀)𝑧))) |
23 | 12, 21, 22 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)(𝑦 ∘f
(+g‘𝑀)𝑧)) = (𝑥 ∘f
(+g‘𝑀)(𝑦 ∘f
(+g‘𝑀)𝑧))) |
24 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘f
(+g‘𝑀)𝑧)) |
25 | 13, 15, 24 | syl2anc 584 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘f
(+g‘𝑀)𝑧)) |
26 | 25 | oveq2d 7291 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)(𝑦(+g‘𝐴)𝑧)) = (𝑥(+g‘𝐴)(𝑦 ∘f
(+g‘𝑀)𝑧))) |
27 | | lmodgrp 20130 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
28 | 27 | grpmndd 18589 |
. . . . . . 7
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
29 | 28 | adantr 481 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ Mnd) |
30 | | eqid 2738 |
. . . . . . . . 9
⊢
(Base‘𝑀) =
(Base‘𝑀) |
31 | 30, 30 | lmhmf 20296 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
32 | 12, 31 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
33 | | fvex 6787 |
. . . . . . . 8
⊢
(Base‘𝑀)
∈ V |
34 | 33, 33 | elmap 8659 |
. . . . . . 7
⊢ (𝑥 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀)) ↔
𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
35 | 32, 34 | sylibr 233 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) |
36 | 30, 30 | lmhmf 20296 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀)) |
37 | 13, 36 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀)) |
38 | 33, 33 | elmap 8659 |
. . . . . . 7
⊢ (𝑦 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀)) ↔
𝑦:(Base‘𝑀)⟶(Base‘𝑀)) |
39 | 37, 38 | sylibr 233 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) |
40 | 30, 30 | lmhmf 20296 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀)) |
41 | 15, 40 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀)) |
42 | 33, 33 | elmap 8659 |
. . . . . . 7
⊢ (𝑧 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀)) ↔
𝑧:(Base‘𝑀)⟶(Base‘𝑀)) |
43 | 41, 42 | sylibr 233 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) |
44 | 30, 6 | mndvass 21541 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀)) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀)))) →
((𝑥 ∘f
(+g‘𝑀)𝑦) ∘f
(+g‘𝑀)𝑧) = (𝑥 ∘f
(+g‘𝑀)(𝑦 ∘f
(+g‘𝑀)𝑧))) |
45 | 29, 35, 39, 43, 44 | syl13anc 1371 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘f
(+g‘𝑀)𝑧) = (𝑥 ∘f
(+g‘𝑀)(𝑦 ∘f
(+g‘𝑀)𝑧))) |
46 | 23, 26, 45 | 3eqtr4d 2788 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)(𝑦(+g‘𝐴)𝑧)) = ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘f
(+g‘𝑀)𝑧)) |
47 | 17, 19, 46 | 3eqtr4d 2788 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(+g‘𝐴)𝑧) = (𝑥(+g‘𝐴)(𝑦(+g‘𝐴)𝑧))) |
48 | | id 22 |
. . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) |
49 | | eqidd 2739 |
. . . 4
⊢ (𝑀 ∈ LMod →
(Scalar‘𝑀) =
(Scalar‘𝑀)) |
50 | | eqid 2738 |
. . . . 5
⊢
(0g‘𝑀) = (0g‘𝑀) |
51 | | eqid 2738 |
. . . . 5
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
52 | 50, 30, 51, 51 | 0lmhm 20302 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧
(Scalar‘𝑀) =
(Scalar‘𝑀)) →
((Base‘𝑀) ×
{(0g‘𝑀)})
∈ (𝑀 LMHom 𝑀)) |
53 | 48, 48, 49, 52 | syl3anc 1370 |
. . 3
⊢ (𝑀 ∈ LMod →
((Base‘𝑀) ×
{(0g‘𝑀)})
∈ (𝑀 LMHom 𝑀)) |
54 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . 5
⊢
((((Base‘𝑀)
× {(0g‘𝑀)}) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)})(+g‘𝐴)𝑥) = (((Base‘𝑀) × {(0g‘𝑀)}) ∘f
(+g‘𝑀)𝑥)) |
55 | 53, 54 | sylan 580 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)})(+g‘𝐴)𝑥) = (((Base‘𝑀) × {(0g‘𝑀)}) ∘f
(+g‘𝑀)𝑥)) |
56 | 31, 34 | sylibr 233 |
. . . . 5
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) |
57 | 30, 6, 50 | mndvlid 21542 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀))) →
(((Base‘𝑀) ×
{(0g‘𝑀)})
∘f (+g‘𝑀)𝑥) = 𝑥) |
58 | 28, 56, 57 | syl2an 596 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)}) ∘f
(+g‘𝑀)𝑥) = 𝑥) |
59 | 55, 58 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)})(+g‘𝐴)𝑥) = 𝑥) |
60 | | eqid 2738 |
. . . . 5
⊢
(invg‘𝑀) = (invg‘𝑀) |
61 | 60 | invlmhm 20304 |
. . . 4
⊢ (𝑀 ∈ LMod →
(invg‘𝑀)
∈ (𝑀 LMHom 𝑀)) |
62 | | lmhmco 20305 |
. . . 4
⊢
(((invg‘𝑀) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg‘𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀)) |
63 | 61, 62 | sylan 580 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg‘𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀)) |
64 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . 5
⊢
((((invg‘𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥)(+g‘𝐴)𝑥) = (((invg‘𝑀) ∘ 𝑥) ∘f
(+g‘𝑀)𝑥)) |
65 | 63, 64 | sylancom 588 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥)(+g‘𝐴)𝑥) = (((invg‘𝑀) ∘ 𝑥) ∘f
(+g‘𝑀)𝑥)) |
66 | 30, 6, 60, 50 | grpvlinv 21544 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ ((Base‘𝑀) ↑m
(Base‘𝑀))) →
(((invg‘𝑀)
∘ 𝑥)
∘f (+g‘𝑀)𝑥) = ((Base‘𝑀) × {(0g‘𝑀)})) |
67 | 27, 56, 66 | syl2an 596 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥) ∘f
(+g‘𝑀)𝑥) = ((Base‘𝑀) × {(0g‘𝑀)})) |
68 | 65, 67 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥)(+g‘𝐴)𝑥) = ((Base‘𝑀) × {(0g‘𝑀)})) |
69 | 3, 4, 11, 47, 53, 59, 63, 68 | isgrpd 18601 |
. 2
⊢ (𝑀 ∈ LMod → 𝐴 ∈ Grp) |
70 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝐴) = (.r‘𝐴) |
71 | 1, 2, 70 | mendmulr 41013 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑦) = (𝑥 ∘ 𝑦)) |
72 | | lmhmco 20305 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀)) |
73 | 71, 72 | eqeltrd 2839 |
. . 3
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
74 | 73 | 3adant1 1129 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
75 | | coass 6169 |
. . 3
⊢ ((𝑥 ∘ 𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦 ∘ 𝑧)) |
76 | 12, 13, 71 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)𝑦) = (𝑥 ∘ 𝑦)) |
77 | 76 | oveq1d 7290 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦)(.r‘𝐴)𝑧)) |
78 | 12, 13, 72 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀)) |
79 | 1, 2, 70 | mendmulr 41013 |
. . . . 5
⊢ (((𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘ 𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
80 | 78, 15, 79 | syl2anc 584 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘ 𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
81 | 77, 80 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
82 | 1, 2, 70 | mendmulr 41013 |
. . . . . 6
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r‘𝐴)𝑧) = (𝑦 ∘ 𝑧)) |
83 | 13, 15, 82 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r‘𝐴)𝑧) = (𝑦 ∘ 𝑧)) |
84 | 83 | oveq2d 7291 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(.r‘𝐴)𝑧)) = (𝑥(.r‘𝐴)(𝑦 ∘ 𝑧))) |
85 | | lmhmco 20305 |
. . . . . 6
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
86 | 13, 15, 85 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
87 | 1, 2, 70 | mendmulr 41013 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)(𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
88 | 12, 86, 87 | syl2anc 584 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
89 | 84, 88 | eqtrd 2778 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(.r‘𝐴)𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
90 | 75, 81, 89 | 3eqtr4a 2804 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(.r‘𝐴)𝑧) = (𝑥(.r‘𝐴)(𝑦(.r‘𝐴)𝑧))) |
91 | 1, 2, 70 | mendmulr 41013 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘f
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)(𝑦 ∘f
(+g‘𝑀)𝑧)) = (𝑥 ∘ (𝑦 ∘f
(+g‘𝑀)𝑧))) |
92 | 12, 21, 91 | syl2anc 584 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦 ∘f
(+g‘𝑀)𝑧)) = (𝑥 ∘ (𝑦 ∘f
(+g‘𝑀)𝑧))) |
93 | 25 | oveq2d 7291 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(+g‘𝐴)𝑧)) = (𝑥(.r‘𝐴)(𝑦 ∘f
(+g‘𝑀)𝑧))) |
94 | | lmhmco 20305 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
95 | 12, 15, 94 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
96 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . 5
⊢ (((𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘ 𝑦)(+g‘𝐴)(𝑥 ∘ 𝑧)) = ((𝑥 ∘ 𝑦) ∘f
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
97 | 78, 95, 96 | syl2anc 584 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘ 𝑦)(+g‘𝐴)(𝑥 ∘ 𝑧)) = ((𝑥 ∘ 𝑦) ∘f
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
98 | 1, 2, 70 | mendmulr 41013 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑧) = (𝑥 ∘ 𝑧)) |
99 | 12, 15, 98 | syl2anc 584 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)𝑧) = (𝑥 ∘ 𝑧)) |
100 | 76, 99 | oveq12d 7293 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(+g‘𝐴)(𝑥(.r‘𝐴)𝑧)) = ((𝑥 ∘ 𝑦)(+g‘𝐴)(𝑥 ∘ 𝑧))) |
101 | | lmghm 20293 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 GrpHom 𝑀)) |
102 | | ghmmhm 18844 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀 GrpHom 𝑀) → 𝑥 ∈ (𝑀 MndHom 𝑀)) |
103 | 12, 101, 102 | 3syl 18 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 MndHom 𝑀)) |
104 | 30, 6, 6 | mhmvlin 21546 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 MndHom 𝑀) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (𝑥 ∘ (𝑦 ∘f
(+g‘𝑀)𝑧)) = ((𝑥 ∘ 𝑦) ∘f
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
105 | 103, 39, 43, 104 | syl3anc 1370 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ (𝑦 ∘f
(+g‘𝑀)𝑧)) = ((𝑥 ∘ 𝑦) ∘f
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
106 | 97, 100, 105 | 3eqtr4d 2788 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(+g‘𝐴)(𝑥(.r‘𝐴)𝑧)) = (𝑥 ∘ (𝑦 ∘f
(+g‘𝑀)𝑧))) |
107 | 92, 93, 106 | 3eqtr4d 2788 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(+g‘𝐴)𝑧)) = ((𝑥(.r‘𝐴)𝑦)(+g‘𝐴)(𝑥(.r‘𝐴)𝑧))) |
108 | 1, 2, 70 | mendmulr 41013 |
. . . 4
⊢ (((𝑥 ∘f
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘f
(+g‘𝑀)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘ 𝑧)) |
109 | 14, 15, 108 | syl2anc 584 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘f
(+g‘𝑀)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘ 𝑧)) |
110 | 18 | oveq1d 7290 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘f
(+g‘𝑀)𝑦)(.r‘𝐴)𝑧)) |
111 | 1, 2, 6, 7 | mendplusg 41011 |
. . . . 5
⊢ (((𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘ 𝑧)(+g‘𝐴)(𝑦 ∘ 𝑧)) = ((𝑥 ∘ 𝑧) ∘f
(+g‘𝑀)(𝑦 ∘ 𝑧))) |
112 | 95, 86, 111 | syl2anc 584 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘ 𝑧)(+g‘𝐴)(𝑦 ∘ 𝑧)) = ((𝑥 ∘ 𝑧) ∘f
(+g‘𝑀)(𝑦 ∘ 𝑧))) |
113 | 99, 83 | oveq12d 7293 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑧)(+g‘𝐴)(𝑦(.r‘𝐴)𝑧)) = ((𝑥 ∘ 𝑧)(+g‘𝐴)(𝑦 ∘ 𝑧))) |
114 | | ffn 6600 |
. . . . . 6
⊢ (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → 𝑥 Fn (Base‘𝑀)) |
115 | 12, 31, 114 | 3syl 18 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 Fn (Base‘𝑀)) |
116 | | ffn 6600 |
. . . . . 6
⊢ (𝑦:(Base‘𝑀)⟶(Base‘𝑀) → 𝑦 Fn (Base‘𝑀)) |
117 | 13, 36, 116 | 3syl 18 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 Fn (Base‘𝑀)) |
118 | 33 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V) |
119 | | inidm 4152 |
. . . . 5
⊢
((Base‘𝑀)
∩ (Base‘𝑀)) =
(Base‘𝑀) |
120 | 115, 117,
41, 118, 118, 118, 119 | ofco 7556 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘ 𝑧) = ((𝑥 ∘ 𝑧) ∘f
(+g‘𝑀)(𝑦 ∘ 𝑧))) |
121 | 112, 113,
120 | 3eqtr4d 2788 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑧)(+g‘𝐴)(𝑦(.r‘𝐴)𝑧)) = ((𝑥 ∘f
(+g‘𝑀)𝑦) ∘ 𝑧)) |
122 | 109, 110,
121 | 3eqtr4d 2788 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥(.r‘𝐴)𝑧)(+g‘𝐴)(𝑦(.r‘𝐴)𝑧))) |
123 | 30 | idlmhm 20303 |
. 2
⊢ (𝑀 ∈ LMod → ( I ↾
(Base‘𝑀)) ∈
(𝑀 LMHom 𝑀)) |
124 | 1, 2, 70 | mendmulr 41013 |
. . . 4
⊢ ((( I
↾ (Base‘𝑀))
∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r‘𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥)) |
125 | 123, 124 | sylan 580 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r‘𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥)) |
126 | 31 | adantl 482 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
127 | | fcoi2 6649 |
. . . 4
⊢ (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥) |
128 | 126, 127 | syl 17 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥) |
129 | 125, 128 | eqtrd 2778 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r‘𝐴)𝑥) = 𝑥) |
130 | | id 22 |
. . . 4
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 LMHom 𝑀)) |
131 | 1, 2, 70 | mendmulr 41013 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀)))) |
132 | 130, 123,
131 | syl2anr 597 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀)))) |
133 | | fcoi1 6648 |
. . . 4
⊢ (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥) |
134 | 126, 133 | syl 17 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥) |
135 | 132, 134 | eqtrd 2778 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)( I ↾ (Base‘𝑀))) = 𝑥) |
136 | 3, 4, 5, 69, 74, 90, 107, 122, 123, 129, 135 | isringd 19824 |
1
⊢ (𝑀 ∈ LMod → 𝐴 ∈ Ring) |