Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendring Structured version   Visualization version   GIF version

Theorem mendring 43308
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
Assertion
Ref Expression
mendring (𝑀 ∈ LMod → 𝐴 ∈ Ring)

Proof of Theorem mendring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 43300 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 (𝑀 ∈ LMod → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 eqidd 2734 . 2 (𝑀 ∈ LMod → (+g𝐴) = (+g𝐴))
5 eqidd 2734 . 2 (𝑀 ∈ LMod → (.r𝐴) = (.r𝐴))
6 eqid 2733 . . . . . 6 (+g𝑀) = (+g𝑀)
7 eqid 2733 . . . . . 6 (+g𝐴) = (+g𝐴)
81, 2, 6, 7mendplusg 43302 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑀)𝑦))
96lmhmplusg 20982 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
108, 9eqeltrd 2833 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
11103adant1 1130 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
12 simpr1 1195 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 LMHom 𝑀))
13 simpr2 1196 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
1412, 13, 9syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
15 simpr3 1197 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
161, 2, 6, 7mendplusg 43302 . . . . 5 (((𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
1714, 15, 16syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
1812, 13, 8syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑀)𝑦))
1918oveq1d 7369 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧))
206lmhmplusg 20982 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
2113, 15, 20syl2anc 584 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
221, 2, 6, 7mendplusg 43302 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
2312, 21, 22syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
241, 2, 6, 7mendplusg 43302 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
2513, 15, 24syl2anc 584 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
2625oveq2d 7370 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)))
27 lmodgrp 20804 . . . . . . . 8 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2827grpmndd 18863 . . . . . . 7 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
2928adantr 480 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ Mnd)
30 eqid 2733 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
3130, 30lmhmf 20972 . . . . . . . 8 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3212, 31syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
33 fvex 6843 . . . . . . . 8 (Base‘𝑀) ∈ V
3433, 33elmap 8803 . . . . . . 7 (𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3532, 34sylibr 234 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
3630, 30lmhmf 20972 . . . . . . . 8 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3713, 36syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3833, 33elmap 8803 . . . . . . 7 (𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3937, 38sylibr 234 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
4030, 30lmhmf 20972 . . . . . . . 8 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4115, 40syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4233, 33elmap 8803 . . . . . . 7 (𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4341, 42sylibr 234 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
4430, 6mndvass 18710 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))) → ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
4529, 35, 39, 43, 44syl13anc 1374 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
4623, 26, 453eqtr4d 2778 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
4717, 19, 463eqtr4d 2778 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)))
48 id 22 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ LMod)
49 eqidd 2734 . . . 4 (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀))
50 eqid 2733 . . . . 5 (0g𝑀) = (0g𝑀)
51 eqid 2733 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
5250, 30, 51, 510lmhm 20978 . . . 4 ((𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧ (Scalar‘𝑀) = (Scalar‘𝑀)) → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
5348, 48, 49, 52syl3anc 1373 . . 3 (𝑀 ∈ LMod → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
541, 2, 6, 7mendplusg 43302 . . . . 5 ((((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥))
5553, 54sylan 580 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥))
5631, 34sylibr 234 . . . . 5 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
5730, 6, 50mndvlid 18711 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥) = 𝑥)
5828, 56, 57syl2an 596 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥) = 𝑥)
5955, 58eqtrd 2768 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = 𝑥)
60 eqid 2733 . . . . 5 (invg𝑀) = (invg𝑀)
6160invlmhm 20980 . . . 4 (𝑀 ∈ LMod → (invg𝑀) ∈ (𝑀 LMHom 𝑀))
62 lmhmco 20981 . . . 4 (((invg𝑀) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
6361, 62sylan 580 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
641, 2, 6, 7mendplusg 43302 . . . . 5 ((((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥))
6563, 64sylancom 588 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥))
6630, 6, 60, 50grpvlinv 22316 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6727, 56, 66syl2an 596 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6865, 67eqtrd 2768 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
693, 4, 11, 47, 53, 59, 63, 68isgrpd 18875 . 2 (𝑀 ∈ LMod → 𝐴 ∈ Grp)
70 eqid 2733 . . . . 5 (.r𝐴) = (.r𝐴)
711, 2, 70mendmulr 43304 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
72 lmhmco 20981 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
7371, 72eqeltrd 2833 . . 3 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
74733adant1 1130 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
75 coass 6220 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
7612, 13, 71syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
7776oveq1d 7369 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦)(.r𝐴)𝑧))
7812, 13, 72syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
791, 2, 70mendmulr 43304 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8078, 15, 79syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8177, 80eqtrd 2768 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
821, 2, 70mendmulr 43304 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8313, 15, 82syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8483oveq2d 7370 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦𝑧)))
85 lmhmco 20981 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
8613, 15, 85syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
871, 2, 70mendmulr 43304 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
8812, 86, 87syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
8984, 88eqtrd 2768 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦𝑧)))
9075, 81, 893eqtr4a 2794 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)))
911, 2, 70mendmulr 43304 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
9212, 21, 91syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
9325oveq2d 7370 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)))
94 lmhmco 20981 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
9512, 15, 94syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
961, 2, 6, 7mendplusg 43302 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
9778, 95, 96syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
981, 2, 70mendmulr 43304 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
9912, 15, 98syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
10076, 99oveq12d 7372 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = ((𝑥𝑦)(+g𝐴)(𝑥𝑧)))
101 lmghm 20969 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 GrpHom 𝑀))
102 ghmmhm 19142 . . . . . 6 (𝑥 ∈ (𝑀 GrpHom 𝑀) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10312, 101, 1023syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10430, 6, 6mhmvlin 18713 . . . . 5 ((𝑥 ∈ (𝑀 MndHom 𝑀) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (𝑥 ∘ (𝑦f (+g𝑀)𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
105103, 39, 43, 104syl3anc 1373 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ (𝑦f (+g𝑀)𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
10697, 100, 1053eqtr4d 2778 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
10792, 93, 1063eqtr4d 2778 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)))
1081, 2, 70mendmulr 43304 . . . 4 (((𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
10914, 15, 108syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
11018oveq1d 7369 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧))
1111, 2, 6, 7mendplusg 43302 . . . . 5 (((𝑥𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
11295, 86, 111syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
11399, 83oveq12d 7372 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥𝑧)(+g𝐴)(𝑦𝑧)))
114 ffn 6658 . . . . . 6 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → 𝑥 Fn (Base‘𝑀))
11512, 31, 1143syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 Fn (Base‘𝑀))
116 ffn 6658 . . . . . 6 (𝑦:(Base‘𝑀)⟶(Base‘𝑀) → 𝑦 Fn (Base‘𝑀))
11713, 36, 1163syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 Fn (Base‘𝑀))
11833a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
119 inidm 4176 . . . . 5 ((Base‘𝑀) ∩ (Base‘𝑀)) = (Base‘𝑀)
120115, 117, 41, 118, 118, 118, 119ofco 7643 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦) ∘ 𝑧) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
121112, 113, 1203eqtr4d 2778 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
122109, 110, 1213eqtr4d 2778 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)))
12330idlmhm 20979 . 2 (𝑀 ∈ LMod → ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀))
1241, 2, 70mendmulr 43304 . . . 4 ((( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
125123, 124sylan 580 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
12631adantl 481 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
127 fcoi2 6705 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
128126, 127syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
129125, 128eqtrd 2768 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = 𝑥)
130 id 22 . . . 4 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 LMHom 𝑀))
1311, 2, 70mendmulr 43304 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
132130, 123, 131syl2anr 597 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
133 fcoi1 6704 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
134126, 133syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
135132, 134eqtrd 2768 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = 𝑥)
1363, 4, 5, 69, 74, 90, 107, 122, 123, 129, 135isringd 20213 1 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577   I cid 5515   × cxp 5619  cres 5623  ccom 5625   Fn wfn 6483  wf 6484  cfv 6488  (class class class)co 7354  f cof 7616  m cmap 8758  Basecbs 17124  +gcplusg 17165  .rcmulr 17166  Scalarcsca 17168  0gc0g 17347  Mndcmnd 18646   MndHom cmhm 18693  Grpcgrp 18850  invgcminusg 18851   GrpHom cghm 19128  Ringcrg 20155  LModclmod 20797   LMHom clmhm 20957  MEndocmend 43291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-of 7618  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-0g 17349  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-mhm 18695  df-grp 18853  df-minusg 18854  df-ghm 19129  df-cmn 19698  df-abl 19699  df-mgp 20063  df-rng 20075  df-ur 20104  df-ring 20157  df-lmod 20799  df-lmhm 20960  df-mend 43292
This theorem is referenced by:  mendlmod  43309  mendassa  43310
  Copyright terms: Public domain W3C validator