Step | Hyp | Ref
| Expression |
1 | | mendassa.a |
. . . 4
⊢ 𝐴 = (MEndo‘𝑀) |
2 | 1 | mendbas 39214 |
. . 3
⊢ (𝑀 LMHom 𝑀) = (Base‘𝐴) |
3 | 2 | a1i 11 |
. 2
⊢ (𝑀 ∈ LMod → (𝑀 LMHom 𝑀) = (Base‘𝐴)) |
4 | | eqidd 2774 |
. 2
⊢ (𝑀 ∈ LMod →
(+g‘𝐴) =
(+g‘𝐴)) |
5 | | eqidd 2774 |
. 2
⊢ (𝑀 ∈ LMod →
(.r‘𝐴) =
(.r‘𝐴)) |
6 | | eqid 2773 |
. . . . . 6
⊢
(+g‘𝑀) = (+g‘𝑀) |
7 | | eqid 2773 |
. . . . . 6
⊢
(+g‘𝐴) = (+g‘𝐴) |
8 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘𝑓
(+g‘𝑀)𝑦)) |
9 | 6 | lmhmplusg 19551 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀)) |
10 | 8, 9 | eqeltrd 2861 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
11 | 10 | 3adant1 1111 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
12 | | simpr1 1175 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 LMHom 𝑀)) |
13 | | simpr2 1176 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀)) |
14 | 12, 13, 9 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀)) |
15 | | simpr3 1177 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀)) |
16 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . 5
⊢ (((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘𝑓
(+g‘𝑀)𝑦)(+g‘𝐴)𝑧) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘𝑓
(+g‘𝑀)𝑧)) |
17 | 14, 15, 16 | syl2anc 576 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘𝑓
(+g‘𝑀)𝑦)(+g‘𝐴)𝑧) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘𝑓
(+g‘𝑀)𝑧)) |
18 | 12, 13, 8 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)𝑦) = (𝑥 ∘𝑓
(+g‘𝑀)𝑦)) |
19 | 18 | oveq1d 6990 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(+g‘𝐴)𝑧) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦)(+g‘𝐴)𝑧)) |
20 | 6 | lmhmplusg 19551 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦 ∘𝑓
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) |
21 | 13, 15, 20 | syl2anc 576 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘𝑓
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) |
22 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘𝑓
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g‘𝐴)(𝑦 ∘𝑓
(+g‘𝑀)𝑧)) = (𝑥 ∘𝑓
(+g‘𝑀)(𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
23 | 12, 21, 22 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)(𝑦 ∘𝑓
(+g‘𝑀)𝑧)) = (𝑥 ∘𝑓
(+g‘𝑀)(𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
24 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘𝑓
(+g‘𝑀)𝑧)) |
25 | 13, 15, 24 | syl2anc 576 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g‘𝐴)𝑧) = (𝑦 ∘𝑓
(+g‘𝑀)𝑧)) |
26 | 25 | oveq2d 6991 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)(𝑦(+g‘𝐴)𝑧)) = (𝑥(+g‘𝐴)(𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
27 | | lmodgrp 19376 |
. . . . . . . 8
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Grp) |
28 | | grpmnd 17911 |
. . . . . . . 8
⊢ (𝑀 ∈ Grp → 𝑀 ∈ Mnd) |
29 | 27, 28 | syl 17 |
. . . . . . 7
⊢ (𝑀 ∈ LMod → 𝑀 ∈ Mnd) |
30 | 29 | adantr 473 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ Mnd) |
31 | | eqid 2773 |
. . . . . . . . 9
⊢
(Base‘𝑀) =
(Base‘𝑀) |
32 | 31, 31 | lmhmf 19541 |
. . . . . . . 8
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
33 | 12, 32 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
34 | | fvex 6510 |
. . . . . . . 8
⊢
(Base‘𝑀)
∈ V |
35 | 34, 34 | elmap 8234 |
. . . . . . 7
⊢ (𝑥 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀)) ↔
𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
36 | 33, 35 | sylibr 226 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀))) |
37 | 31, 31 | lmhmf 19541 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀)) |
38 | 13, 37 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀)) |
39 | 34, 34 | elmap 8234 |
. . . . . . 7
⊢ (𝑦 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀)) ↔
𝑦:(Base‘𝑀)⟶(Base‘𝑀)) |
40 | 38, 39 | sylibr 226 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀))) |
41 | 31, 31 | lmhmf 19541 |
. . . . . . . 8
⊢ (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀)) |
42 | 15, 41 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀)) |
43 | 34, 34 | elmap 8234 |
. . . . . . 7
⊢ (𝑧 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀)) ↔
𝑧:(Base‘𝑀)⟶(Base‘𝑀)) |
44 | 42, 43 | sylibr 226 |
. . . . . 6
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀))) |
45 | 31, 6 | mndvass 20721 |
. . . . . 6
⊢ ((𝑀 ∈ Mnd ∧ (𝑥 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀)) ∧ 𝑦 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀)))) →
((𝑥
∘𝑓 (+g‘𝑀)𝑦) ∘𝑓
(+g‘𝑀)𝑧) = (𝑥 ∘𝑓
(+g‘𝑀)(𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
46 | 30, 36, 40, 44, 45 | syl13anc 1353 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘𝑓
(+g‘𝑀)𝑧) = (𝑥 ∘𝑓
(+g‘𝑀)(𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
47 | 23, 26, 46 | 3eqtr4d 2819 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g‘𝐴)(𝑦(+g‘𝐴)𝑧)) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘𝑓
(+g‘𝑀)𝑧)) |
48 | 17, 19, 47 | 3eqtr4d 2819 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(+g‘𝐴)𝑧) = (𝑥(+g‘𝐴)(𝑦(+g‘𝐴)𝑧))) |
49 | | id 22 |
. . . 4
⊢ (𝑀 ∈ LMod → 𝑀 ∈ LMod) |
50 | | eqidd 2774 |
. . . 4
⊢ (𝑀 ∈ LMod →
(Scalar‘𝑀) =
(Scalar‘𝑀)) |
51 | | eqid 2773 |
. . . . 5
⊢
(0g‘𝑀) = (0g‘𝑀) |
52 | | eqid 2773 |
. . . . 5
⊢
(Scalar‘𝑀) =
(Scalar‘𝑀) |
53 | 51, 31, 52, 52 | 0lmhm 19547 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧
(Scalar‘𝑀) =
(Scalar‘𝑀)) →
((Base‘𝑀) ×
{(0g‘𝑀)})
∈ (𝑀 LMHom 𝑀)) |
54 | 49, 49, 50, 53 | syl3anc 1352 |
. . 3
⊢ (𝑀 ∈ LMod →
((Base‘𝑀) ×
{(0g‘𝑀)})
∈ (𝑀 LMHom 𝑀)) |
55 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . 5
⊢
((((Base‘𝑀)
× {(0g‘𝑀)}) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)})(+g‘𝐴)𝑥) = (((Base‘𝑀) × {(0g‘𝑀)}) ∘𝑓
(+g‘𝑀)𝑥)) |
56 | 54, 55 | sylan 572 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)})(+g‘𝐴)𝑥) = (((Base‘𝑀) × {(0g‘𝑀)}) ∘𝑓
(+g‘𝑀)𝑥)) |
57 | 32, 35 | sylibr 226 |
. . . . 5
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀))) |
58 | 31, 6, 51 | mndvlid 20722 |
. . . . 5
⊢ ((𝑀 ∈ Mnd ∧ 𝑥 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀))) →
(((Base‘𝑀) ×
{(0g‘𝑀)})
∘𝑓 (+g‘𝑀)𝑥) = 𝑥) |
59 | 29, 57, 58 | syl2an 587 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)}) ∘𝑓
(+g‘𝑀)𝑥) = 𝑥) |
60 | 56, 59 | eqtrd 2809 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g‘𝑀)})(+g‘𝐴)𝑥) = 𝑥) |
61 | | eqid 2773 |
. . . . 5
⊢
(invg‘𝑀) = (invg‘𝑀) |
62 | 61 | invlmhm 19549 |
. . . 4
⊢ (𝑀 ∈ LMod →
(invg‘𝑀)
∈ (𝑀 LMHom 𝑀)) |
63 | | lmhmco 19550 |
. . . 4
⊢
(((invg‘𝑀) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg‘𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀)) |
64 | 62, 63 | sylan 572 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg‘𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀)) |
65 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . 5
⊢
((((invg‘𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥)(+g‘𝐴)𝑥) = (((invg‘𝑀) ∘ 𝑥) ∘𝑓
(+g‘𝑀)𝑥)) |
66 | 64, 65 | sylancom 580 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥)(+g‘𝐴)𝑥) = (((invg‘𝑀) ∘ 𝑥) ∘𝑓
(+g‘𝑀)𝑥)) |
67 | 31, 6, 61, 51 | grpvlinv 20724 |
. . . . 5
⊢ ((𝑀 ∈ Grp ∧ 𝑥 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀))) →
(((invg‘𝑀)
∘ 𝑥)
∘𝑓 (+g‘𝑀)𝑥) = ((Base‘𝑀) × {(0g‘𝑀)})) |
68 | 27, 57, 67 | syl2an 587 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥) ∘𝑓
(+g‘𝑀)𝑥) = ((Base‘𝑀) × {(0g‘𝑀)})) |
69 | 66, 68 | eqtrd 2809 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg‘𝑀) ∘ 𝑥)(+g‘𝐴)𝑥) = ((Base‘𝑀) × {(0g‘𝑀)})) |
70 | 3, 4, 11, 48, 54, 60, 64, 69 | isgrpd 17926 |
. 2
⊢ (𝑀 ∈ LMod → 𝐴 ∈ Grp) |
71 | | eqid 2773 |
. . . . 5
⊢
(.r‘𝐴) = (.r‘𝐴) |
72 | 1, 2, 71 | mendmulr 39218 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑦) = (𝑥 ∘ 𝑦)) |
73 | | lmhmco 19550 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀)) |
74 | 72, 73 | eqeltrd 2861 |
. . 3
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
75 | 74 | 3adant1 1111 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑦) ∈ (𝑀 LMHom 𝑀)) |
76 | | coass 5955 |
. . 3
⊢ ((𝑥 ∘ 𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦 ∘ 𝑧)) |
77 | 12, 13, 72 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)𝑦) = (𝑥 ∘ 𝑦)) |
78 | 77 | oveq1d 6990 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦)(.r‘𝐴)𝑧)) |
79 | 12, 13, 73 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀)) |
80 | 1, 2, 71 | mendmulr 39218 |
. . . . 5
⊢ (((𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘ 𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
81 | 79, 15, 80 | syl2anc 576 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘ 𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
82 | 78, 81 | eqtrd 2809 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
83 | 1, 2, 71 | mendmulr 39218 |
. . . . . 6
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r‘𝐴)𝑧) = (𝑦 ∘ 𝑧)) |
84 | 13, 15, 83 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r‘𝐴)𝑧) = (𝑦 ∘ 𝑧)) |
85 | 84 | oveq2d 6991 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(.r‘𝐴)𝑧)) = (𝑥(.r‘𝐴)(𝑦 ∘ 𝑧))) |
86 | | lmhmco 19550 |
. . . . . 6
⊢ ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
87 | 13, 15, 86 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
88 | 1, 2, 71 | mendmulr 39218 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)(𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
89 | 12, 87, 88 | syl2anc 576 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
90 | 85, 89 | eqtrd 2809 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(.r‘𝐴)𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
91 | 76, 82, 90 | 3eqtr4a 2835 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(.r‘𝐴)𝑧) = (𝑥(.r‘𝐴)(𝑦(.r‘𝐴)𝑧))) |
92 | 1, 2, 71 | mendmulr 39218 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘𝑓
(+g‘𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)(𝑦 ∘𝑓
(+g‘𝑀)𝑧)) = (𝑥 ∘ (𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
93 | 12, 21, 92 | syl2anc 576 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦 ∘𝑓
(+g‘𝑀)𝑧)) = (𝑥 ∘ (𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
94 | 25 | oveq2d 6991 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(+g‘𝐴)𝑧)) = (𝑥(.r‘𝐴)(𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
95 | | lmhmco 19550 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
96 | 12, 15, 95 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) |
97 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . 5
⊢ (((𝑥 ∘ 𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘ 𝑦)(+g‘𝐴)(𝑥 ∘ 𝑧)) = ((𝑥 ∘ 𝑦) ∘𝑓
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
98 | 79, 96, 97 | syl2anc 576 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘ 𝑦)(+g‘𝐴)(𝑥 ∘ 𝑧)) = ((𝑥 ∘ 𝑦) ∘𝑓
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
99 | 1, 2, 71 | mendmulr 39218 |
. . . . . 6
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)𝑧) = (𝑥 ∘ 𝑧)) |
100 | 12, 15, 99 | syl2anc 576 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)𝑧) = (𝑥 ∘ 𝑧)) |
101 | 77, 100 | oveq12d 6993 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(+g‘𝐴)(𝑥(.r‘𝐴)𝑧)) = ((𝑥 ∘ 𝑦)(+g‘𝐴)(𝑥 ∘ 𝑧))) |
102 | | lmghm 19538 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 GrpHom 𝑀)) |
103 | | ghmmhm 18152 |
. . . . . 6
⊢ (𝑥 ∈ (𝑀 GrpHom 𝑀) → 𝑥 ∈ (𝑀 MndHom 𝑀)) |
104 | 12, 102, 103 | 3syl 18 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 MndHom 𝑀)) |
105 | 31, 6, 6 | mhmvlin 20726 |
. . . . 5
⊢ ((𝑥 ∈ (𝑀 MndHom 𝑀) ∧ 𝑦 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑𝑚
(Base‘𝑀))) →
(𝑥 ∘ (𝑦 ∘𝑓
(+g‘𝑀)𝑧)) = ((𝑥 ∘ 𝑦) ∘𝑓
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
106 | 104, 40, 44, 105 | syl3anc 1352 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ (𝑦 ∘𝑓
(+g‘𝑀)𝑧)) = ((𝑥 ∘ 𝑦) ∘𝑓
(+g‘𝑀)(𝑥 ∘ 𝑧))) |
107 | 98, 101, 106 | 3eqtr4d 2819 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑦)(+g‘𝐴)(𝑥(.r‘𝐴)𝑧)) = (𝑥 ∘ (𝑦 ∘𝑓
(+g‘𝑀)𝑧))) |
108 | 93, 94, 107 | 3eqtr4d 2819 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r‘𝐴)(𝑦(+g‘𝐴)𝑧)) = ((𝑥(.r‘𝐴)𝑦)(+g‘𝐴)(𝑥(.r‘𝐴)𝑧))) |
109 | 1, 2, 71 | mendmulr 39218 |
. . . 4
⊢ (((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘𝑓
(+g‘𝑀)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘ 𝑧)) |
110 | 14, 15, 109 | syl2anc 576 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘𝑓
(+g‘𝑀)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘ 𝑧)) |
111 | 18 | oveq1d 6990 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦)(.r‘𝐴)𝑧)) |
112 | 1, 2, 6, 7 | mendplusg 39216 |
. . . . 5
⊢ (((𝑥 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥 ∘ 𝑧)(+g‘𝐴)(𝑦 ∘ 𝑧)) = ((𝑥 ∘ 𝑧) ∘𝑓
(+g‘𝑀)(𝑦 ∘ 𝑧))) |
113 | 96, 87, 112 | syl2anc 576 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘ 𝑧)(+g‘𝐴)(𝑦 ∘ 𝑧)) = ((𝑥 ∘ 𝑧) ∘𝑓
(+g‘𝑀)(𝑦 ∘ 𝑧))) |
114 | 100, 84 | oveq12d 6993 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑧)(+g‘𝐴)(𝑦(.r‘𝐴)𝑧)) = ((𝑥 ∘ 𝑧)(+g‘𝐴)(𝑦 ∘ 𝑧))) |
115 | | ffn 6342 |
. . . . . 6
⊢ (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → 𝑥 Fn (Base‘𝑀)) |
116 | 12, 32, 115 | 3syl 18 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 Fn (Base‘𝑀)) |
117 | | ffn 6342 |
. . . . . 6
⊢ (𝑦:(Base‘𝑀)⟶(Base‘𝑀) → 𝑦 Fn (Base‘𝑀)) |
118 | 13, 37, 117 | 3syl 18 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 Fn (Base‘𝑀)) |
119 | 34 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V) |
120 | | inidm 4077 |
. . . . 5
⊢
((Base‘𝑀)
∩ (Base‘𝑀)) =
(Base‘𝑀) |
121 | 116, 118,
42, 119, 119, 119, 120 | ofco 7246 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘ 𝑧) = ((𝑥 ∘ 𝑧) ∘𝑓
(+g‘𝑀)(𝑦 ∘ 𝑧))) |
122 | 113, 114,
121 | 3eqtr4d 2819 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r‘𝐴)𝑧)(+g‘𝐴)(𝑦(.r‘𝐴)𝑧)) = ((𝑥 ∘𝑓
(+g‘𝑀)𝑦) ∘ 𝑧)) |
123 | 110, 111,
122 | 3eqtr4d 2819 |
. 2
⊢ ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g‘𝐴)𝑦)(.r‘𝐴)𝑧) = ((𝑥(.r‘𝐴)𝑧)(+g‘𝐴)(𝑦(.r‘𝐴)𝑧))) |
124 | 31 | idlmhm 19548 |
. 2
⊢ (𝑀 ∈ LMod → ( I ↾
(Base‘𝑀)) ∈
(𝑀 LMHom 𝑀)) |
125 | 1, 2, 71 | mendmulr 39218 |
. . . 4
⊢ ((( I
↾ (Base‘𝑀))
∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r‘𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥)) |
126 | 124, 125 | sylan 572 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r‘𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥)) |
127 | 32 | adantl 474 |
. . . 4
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀)) |
128 | | fcoi2 6380 |
. . . 4
⊢ (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥) |
129 | 127, 128 | syl 17 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥) |
130 | 126, 129 | eqtrd 2809 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r‘𝐴)𝑥) = 𝑥) |
131 | | id 22 |
. . . 4
⊢ (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 LMHom 𝑀)) |
132 | 1, 2, 71 | mendmulr 39218 |
. . . 4
⊢ ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀)))) |
133 | 131, 124,
132 | syl2anr 588 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀)))) |
134 | | fcoi1 6379 |
. . . 4
⊢ (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥) |
135 | 127, 134 | syl 17 |
. . 3
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥) |
136 | 133, 135 | eqtrd 2809 |
. 2
⊢ ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r‘𝐴)( I ↾ (Base‘𝑀))) = 𝑥) |
137 | 3, 4, 5, 70, 75, 91, 108, 123, 124, 130, 136 | isringd 19071 |
1
⊢ (𝑀 ∈ LMod → 𝐴 ∈ Ring) |