Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendring Structured version   Visualization version   GIF version

Theorem mendring 40661
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
Assertion
Ref Expression
mendring (𝑀 ∈ LMod → 𝐴 ∈ Ring)

Proof of Theorem mendring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 40653 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 (𝑀 ∈ LMod → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 eqidd 2737 . 2 (𝑀 ∈ LMod → (+g𝐴) = (+g𝐴))
5 eqidd 2737 . 2 (𝑀 ∈ LMod → (.r𝐴) = (.r𝐴))
6 eqid 2736 . . . . . 6 (+g𝑀) = (+g𝑀)
7 eqid 2736 . . . . . 6 (+g𝐴) = (+g𝐴)
81, 2, 6, 7mendplusg 40655 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑀)𝑦))
96lmhmplusg 20035 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
108, 9eqeltrd 2831 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
11103adant1 1132 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
12 simpr1 1196 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 LMHom 𝑀))
13 simpr2 1197 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
1412, 13, 9syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
15 simpr3 1198 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
161, 2, 6, 7mendplusg 40655 . . . . 5 (((𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
1714, 15, 16syl2anc 587 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
1812, 13, 8syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑀)𝑦))
1918oveq1d 7206 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧))
206lmhmplusg 20035 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
2113, 15, 20syl2anc 587 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
221, 2, 6, 7mendplusg 40655 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
2312, 21, 22syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
241, 2, 6, 7mendplusg 40655 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
2513, 15, 24syl2anc 587 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
2625oveq2d 7207 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)))
27 lmodgrp 19860 . . . . . . . 8 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2827grpmndd 18331 . . . . . . 7 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
2928adantr 484 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ Mnd)
30 eqid 2736 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
3130, 30lmhmf 20025 . . . . . . . 8 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3212, 31syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
33 fvex 6708 . . . . . . . 8 (Base‘𝑀) ∈ V
3433, 33elmap 8530 . . . . . . 7 (𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3532, 34sylibr 237 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
3630, 30lmhmf 20025 . . . . . . . 8 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3713, 36syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3833, 33elmap 8530 . . . . . . 7 (𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3937, 38sylibr 237 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
4030, 30lmhmf 20025 . . . . . . . 8 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4115, 40syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4233, 33elmap 8530 . . . . . . 7 (𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4341, 42sylibr 237 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
4430, 6mndvass 21245 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))) → ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
4529, 35, 39, 43, 44syl13anc 1374 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
4623, 26, 453eqtr4d 2781 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
4717, 19, 463eqtr4d 2781 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)))
48 id 22 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ LMod)
49 eqidd 2737 . . . 4 (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀))
50 eqid 2736 . . . . 5 (0g𝑀) = (0g𝑀)
51 eqid 2736 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
5250, 30, 51, 510lmhm 20031 . . . 4 ((𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧ (Scalar‘𝑀) = (Scalar‘𝑀)) → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
5348, 48, 49, 52syl3anc 1373 . . 3 (𝑀 ∈ LMod → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
541, 2, 6, 7mendplusg 40655 . . . . 5 ((((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥))
5553, 54sylan 583 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥))
5631, 34sylibr 237 . . . . 5 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
5730, 6, 50mndvlid 21246 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥) = 𝑥)
5828, 56, 57syl2an 599 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥) = 𝑥)
5955, 58eqtrd 2771 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = 𝑥)
60 eqid 2736 . . . . 5 (invg𝑀) = (invg𝑀)
6160invlmhm 20033 . . . 4 (𝑀 ∈ LMod → (invg𝑀) ∈ (𝑀 LMHom 𝑀))
62 lmhmco 20034 . . . 4 (((invg𝑀) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
6361, 62sylan 583 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
641, 2, 6, 7mendplusg 40655 . . . . 5 ((((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥))
6563, 64sylancom 591 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥))
6630, 6, 60, 50grpvlinv 21248 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6727, 56, 66syl2an 599 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6865, 67eqtrd 2771 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
693, 4, 11, 47, 53, 59, 63, 68isgrpd 18343 . 2 (𝑀 ∈ LMod → 𝐴 ∈ Grp)
70 eqid 2736 . . . . 5 (.r𝐴) = (.r𝐴)
711, 2, 70mendmulr 40657 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
72 lmhmco 20034 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
7371, 72eqeltrd 2831 . . 3 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
74733adant1 1132 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
75 coass 6109 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
7612, 13, 71syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
7776oveq1d 7206 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦)(.r𝐴)𝑧))
7812, 13, 72syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
791, 2, 70mendmulr 40657 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8078, 15, 79syl2anc 587 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8177, 80eqtrd 2771 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
821, 2, 70mendmulr 40657 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8313, 15, 82syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8483oveq2d 7207 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦𝑧)))
85 lmhmco 20034 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
8613, 15, 85syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
871, 2, 70mendmulr 40657 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
8812, 86, 87syl2anc 587 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
8984, 88eqtrd 2771 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦𝑧)))
9075, 81, 893eqtr4a 2797 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)))
911, 2, 70mendmulr 40657 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
9212, 21, 91syl2anc 587 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
9325oveq2d 7207 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)))
94 lmhmco 20034 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
9512, 15, 94syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
961, 2, 6, 7mendplusg 40655 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
9778, 95, 96syl2anc 587 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
981, 2, 70mendmulr 40657 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
9912, 15, 98syl2anc 587 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
10076, 99oveq12d 7209 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = ((𝑥𝑦)(+g𝐴)(𝑥𝑧)))
101 lmghm 20022 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 GrpHom 𝑀))
102 ghmmhm 18586 . . . . . 6 (𝑥 ∈ (𝑀 GrpHom 𝑀) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10312, 101, 1023syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10430, 6, 6mhmvlin 21250 . . . . 5 ((𝑥 ∈ (𝑀 MndHom 𝑀) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (𝑥 ∘ (𝑦f (+g𝑀)𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
105103, 39, 43, 104syl3anc 1373 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ (𝑦f (+g𝑀)𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
10697, 100, 1053eqtr4d 2781 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
10792, 93, 1063eqtr4d 2781 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)))
1081, 2, 70mendmulr 40657 . . . 4 (((𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
10914, 15, 108syl2anc 587 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
11018oveq1d 7206 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧))
1111, 2, 6, 7mendplusg 40655 . . . . 5 (((𝑥𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
11295, 86, 111syl2anc 587 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
11399, 83oveq12d 7209 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥𝑧)(+g𝐴)(𝑦𝑧)))
114 ffn 6523 . . . . . 6 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → 𝑥 Fn (Base‘𝑀))
11512, 31, 1143syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 Fn (Base‘𝑀))
116 ffn 6523 . . . . . 6 (𝑦:(Base‘𝑀)⟶(Base‘𝑀) → 𝑦 Fn (Base‘𝑀))
11713, 36, 1163syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 Fn (Base‘𝑀))
11833a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
119 inidm 4119 . . . . 5 ((Base‘𝑀) ∩ (Base‘𝑀)) = (Base‘𝑀)
120115, 117, 41, 118, 118, 118, 119ofco 7469 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦) ∘ 𝑧) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
121112, 113, 1203eqtr4d 2781 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
122109, 110, 1213eqtr4d 2781 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)))
12330idlmhm 20032 . 2 (𝑀 ∈ LMod → ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀))
1241, 2, 70mendmulr 40657 . . . 4 ((( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
125123, 124sylan 583 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
12631adantl 485 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
127 fcoi2 6572 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
128126, 127syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
129125, 128eqtrd 2771 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = 𝑥)
130 id 22 . . . 4 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 LMHom 𝑀))
1311, 2, 70mendmulr 40657 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
132130, 123, 131syl2anr 600 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
133 fcoi1 6571 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
134126, 133syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
135132, 134eqtrd 2771 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = 𝑥)
1363, 4, 5, 69, 74, 90, 107, 122, 123, 129, 135isringd 19557 1 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2112  Vcvv 3398  {csn 4527   I cid 5439   × cxp 5534  cres 5538  ccom 5540   Fn wfn 6353  wf 6354  cfv 6358  (class class class)co 7191  f cof 7445  m cmap 8486  Basecbs 16666  +gcplusg 16749  .rcmulr 16750  Scalarcsca 16752  0gc0g 16898  Mndcmnd 18127   MndHom cmhm 18170  Grpcgrp 18319  invgcminusg 18320   GrpHom cghm 18573  Ringcrg 19516  LModclmod 19853   LMHom clmhm 20010  MEndocmend 40644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-n0 12056  df-z 12142  df-uz 12404  df-fz 13061  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-plusg 16762  df-mulr 16763  df-sca 16765  df-vsca 16766  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-mhm 18172  df-grp 18322  df-minusg 18323  df-ghm 18574  df-cmn 19126  df-abl 19127  df-mgp 19459  df-ur 19471  df-ring 19518  df-lmod 19855  df-lmhm 20013  df-mend 40645
This theorem is referenced by:  mendlmod  40662  mendassa  40663
  Copyright terms: Public domain W3C validator