Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendring Structured version   Visualization version   GIF version

Theorem mendring 41017
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a 𝐴 = (MEndo‘𝑀)
Assertion
Ref Expression
mendring (𝑀 ∈ LMod → 𝐴 ∈ Ring)

Proof of Theorem mendring
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndo‘𝑀)
21mendbas 41009 . . 3 (𝑀 LMHom 𝑀) = (Base‘𝐴)
32a1i 11 . 2 (𝑀 ∈ LMod → (𝑀 LMHom 𝑀) = (Base‘𝐴))
4 eqidd 2739 . 2 (𝑀 ∈ LMod → (+g𝐴) = (+g𝐴))
5 eqidd 2739 . 2 (𝑀 ∈ LMod → (.r𝐴) = (.r𝐴))
6 eqid 2738 . . . . . 6 (+g𝑀) = (+g𝑀)
7 eqid 2738 . . . . . 6 (+g𝐴) = (+g𝐴)
81, 2, 6, 7mendplusg 41011 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑀)𝑦))
96lmhmplusg 20306 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
108, 9eqeltrd 2839 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
11103adant1 1129 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
12 simpr1 1193 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 LMHom 𝑀))
13 simpr2 1194 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ (𝑀 LMHom 𝑀))
1412, 13, 9syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀))
15 simpr3 1195 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ (𝑀 LMHom 𝑀))
161, 2, 6, 7mendplusg 41011 . . . . 5 (((𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
1714, 15, 16syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
1812, 13, 8syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)𝑦) = (𝑥f (+g𝑀)𝑦))
1918oveq1d 7290 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦)(+g𝐴)𝑧))
206lmhmplusg 20306 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
2113, 15, 20syl2anc 584 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀))
221, 2, 6, 7mendplusg 41011 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
2312, 21, 22syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
241, 2, 6, 7mendplusg 41011 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
2513, 15, 24syl2anc 584 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(+g𝐴)𝑧) = (𝑦f (+g𝑀)𝑧))
2625oveq2d 7291 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(+g𝐴)(𝑦f (+g𝑀)𝑧)))
27 lmodgrp 20130 . . . . . . . 8 (𝑀 ∈ LMod → 𝑀 ∈ Grp)
2827grpmndd 18589 . . . . . . 7 (𝑀 ∈ LMod → 𝑀 ∈ Mnd)
2928adantr 481 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑀 ∈ Mnd)
30 eqid 2738 . . . . . . . . 9 (Base‘𝑀) = (Base‘𝑀)
3130, 30lmhmf 20296 . . . . . . . 8 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3212, 31syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
33 fvex 6787 . . . . . . . 8 (Base‘𝑀) ∈ V
3433, 33elmap 8659 . . . . . . 7 (𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
3532, 34sylibr 233 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
3630, 30lmhmf 20296 . . . . . . . 8 (𝑦 ∈ (𝑀 LMHom 𝑀) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3713, 36syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3833, 33elmap 8659 . . . . . . 7 (𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑦:(Base‘𝑀)⟶(Base‘𝑀))
3937, 38sylibr 233 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
4030, 30lmhmf 20296 . . . . . . . 8 (𝑧 ∈ (𝑀 LMHom 𝑀) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4115, 40syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4233, 33elmap 8659 . . . . . . 7 (𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ↔ 𝑧:(Base‘𝑀)⟶(Base‘𝑀))
4341, 42sylibr 233 . . . . . 6 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
4430, 6mndvass 21541 . . . . . 6 ((𝑀 ∈ Mnd ∧ (𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))) → ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
4529, 35, 39, 43, 44syl13anc 1371 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧) = (𝑥f (+g𝑀)(𝑦f (+g𝑀)𝑧)))
4623, 26, 453eqtr4d 2788 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥f (+g𝑀)𝑦) ∘f (+g𝑀)𝑧))
4717, 19, 463eqtr4d 2788 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(+g𝐴)𝑧) = (𝑥(+g𝐴)(𝑦(+g𝐴)𝑧)))
48 id 22 . . . 4 (𝑀 ∈ LMod → 𝑀 ∈ LMod)
49 eqidd 2739 . . . 4 (𝑀 ∈ LMod → (Scalar‘𝑀) = (Scalar‘𝑀))
50 eqid 2738 . . . . 5 (0g𝑀) = (0g𝑀)
51 eqid 2738 . . . . 5 (Scalar‘𝑀) = (Scalar‘𝑀)
5250, 30, 51, 510lmhm 20302 . . . 4 ((𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧ (Scalar‘𝑀) = (Scalar‘𝑀)) → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
5348, 48, 49, 52syl3anc 1370 . . 3 (𝑀 ∈ LMod → ((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀))
541, 2, 6, 7mendplusg 41011 . . . . 5 ((((Base‘𝑀) × {(0g𝑀)}) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥))
5553, 54sylan 580 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥))
5631, 34sylibr 233 . . . . 5 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)))
5730, 6, 50mndvlid 21542 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥) = 𝑥)
5828, 56, 57syl2an 596 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)}) ∘f (+g𝑀)𝑥) = 𝑥)
5955, 58eqtrd 2778 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((Base‘𝑀) × {(0g𝑀)})(+g𝐴)𝑥) = 𝑥)
60 eqid 2738 . . . . 5 (invg𝑀) = (invg𝑀)
6160invlmhm 20304 . . . 4 (𝑀 ∈ LMod → (invg𝑀) ∈ (𝑀 LMHom 𝑀))
62 lmhmco 20305 . . . 4 (((invg𝑀) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
6361, 62sylan 580 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → ((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀))
641, 2, 6, 7mendplusg 41011 . . . . 5 ((((invg𝑀) ∘ 𝑥) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥))
6563, 64sylancom 588 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥))
6630, 6, 60, 50grpvlinv 21544 . . . . 5 ((𝑀 ∈ Grp ∧ 𝑥 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6727, 56, 66syl2an 596 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥) ∘f (+g𝑀)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
6865, 67eqtrd 2778 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (((invg𝑀) ∘ 𝑥)(+g𝐴)𝑥) = ((Base‘𝑀) × {(0g𝑀)}))
693, 4, 11, 47, 53, 59, 63, 68isgrpd 18601 . 2 (𝑀 ∈ LMod → 𝐴 ∈ Grp)
70 eqid 2738 . . . . 5 (.r𝐴) = (.r𝐴)
711, 2, 70mendmulr 41013 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
72 lmhmco 20305 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
7371, 72eqeltrd 2839 . . 3 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
74733adant1 1129 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑦) ∈ (𝑀 LMHom 𝑀))
75 coass 6169 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
7612, 13, 71syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑦) = (𝑥𝑦))
7776oveq1d 7290 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦)(.r𝐴)𝑧))
7812, 13, 72syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑦) ∈ (𝑀 LMHom 𝑀))
791, 2, 70mendmulr 41013 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8078, 15, 79syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
8177, 80eqtrd 2778 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥𝑦) ∘ 𝑧))
821, 2, 70mendmulr 41013 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8313, 15, 82syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦(.r𝐴)𝑧) = (𝑦𝑧))
8483oveq2d 7291 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦𝑧)))
85 lmhmco 20305 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
8613, 15, 85syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑦𝑧) ∈ (𝑀 LMHom 𝑀))
871, 2, 70mendmulr 41013 . . . . 5 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
8812, 86, 87syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
8984, 88eqtrd 2778 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦𝑧)))
9075, 81, 893eqtr4a 2804 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(.r𝐴)𝑧) = (𝑥(.r𝐴)(𝑦(.r𝐴)𝑧)))
911, 2, 70mendmulr 41013 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ (𝑦f (+g𝑀)𝑧) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
9212, 21, 91syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
9325oveq2d 7291 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = (𝑥(.r𝐴)(𝑦f (+g𝑀)𝑧)))
94 lmhmco 20305 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
9512, 15, 94syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥𝑧) ∈ (𝑀 LMHom 𝑀))
961, 2, 6, 7mendplusg 41011 . . . . 5 (((𝑥𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (𝑥𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
9778, 95, 96syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑦)(+g𝐴)(𝑥𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
981, 2, 70mendmulr 41013 . . . . . 6 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
9912, 15, 98syl2anc 584 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)𝑧) = (𝑥𝑧))
10076, 99oveq12d 7293 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = ((𝑥𝑦)(+g𝐴)(𝑥𝑧)))
101 lmghm 20293 . . . . . 6 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 GrpHom 𝑀))
102 ghmmhm 18844 . . . . . 6 (𝑥 ∈ (𝑀 GrpHom 𝑀) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10312, 101, 1023syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 ∈ (𝑀 MndHom 𝑀))
10430, 6, 6mhmvlin 21546 . . . . 5 ((𝑥 ∈ (𝑀 MndHom 𝑀) ∧ 𝑦 ∈ ((Base‘𝑀) ↑m (Base‘𝑀)) ∧ 𝑧 ∈ ((Base‘𝑀) ↑m (Base‘𝑀))) → (𝑥 ∘ (𝑦f (+g𝑀)𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
105103, 39, 43, 104syl3anc 1370 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥 ∘ (𝑦f (+g𝑀)𝑧)) = ((𝑥𝑦) ∘f (+g𝑀)(𝑥𝑧)))
10697, 100, 1053eqtr4d 2788 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)) = (𝑥 ∘ (𝑦f (+g𝑀)𝑧)))
10792, 93, 1063eqtr4d 2788 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (𝑥(.r𝐴)(𝑦(+g𝐴)𝑧)) = ((𝑥(.r𝐴)𝑦)(+g𝐴)(𝑥(.r𝐴)𝑧)))
1081, 2, 70mendmulr 41013 . . . 4 (((𝑥f (+g𝑀)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) → ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
10914, 15, 108syl2anc 584 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
11018oveq1d 7290 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥f (+g𝑀)𝑦)(.r𝐴)𝑧))
1111, 2, 6, 7mendplusg 41011 . . . . 5 (((𝑥𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦𝑧) ∈ (𝑀 LMHom 𝑀)) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
11295, 86, 111syl2anc 584 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥𝑧)(+g𝐴)(𝑦𝑧)) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
11399, 83oveq12d 7293 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥𝑧)(+g𝐴)(𝑦𝑧)))
114 ffn 6600 . . . . . 6 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → 𝑥 Fn (Base‘𝑀))
11512, 31, 1143syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑥 Fn (Base‘𝑀))
116 ffn 6600 . . . . . 6 (𝑦:(Base‘𝑀)⟶(Base‘𝑀) → 𝑦 Fn (Base‘𝑀))
11713, 36, 1163syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → 𝑦 Fn (Base‘𝑀))
11833a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → (Base‘𝑀) ∈ V)
119 inidm 4152 . . . . 5 ((Base‘𝑀) ∩ (Base‘𝑀)) = (Base‘𝑀)
120115, 117, 41, 118, 118, 118, 119ofco 7556 . . . 4 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥f (+g𝑀)𝑦) ∘ 𝑧) = ((𝑥𝑧) ∘f (+g𝑀)(𝑦𝑧)))
121112, 113, 1203eqtr4d 2788 . . 3 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)) = ((𝑥f (+g𝑀)𝑦) ∘ 𝑧))
122109, 110, 1213eqtr4d 2788 . 2 ((𝑀 ∈ LMod ∧ (𝑥 ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) → ((𝑥(+g𝐴)𝑦)(.r𝐴)𝑧) = ((𝑥(.r𝐴)𝑧)(+g𝐴)(𝑦(.r𝐴)𝑧)))
12330idlmhm 20303 . 2 (𝑀 ∈ LMod → ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀))
1241, 2, 70mendmulr 41013 . . . 4 ((( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀) ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
125123, 124sylan 580 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = (( I ↾ (Base‘𝑀)) ∘ 𝑥))
12631adantl 482 . . . 4 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → 𝑥:(Base‘𝑀)⟶(Base‘𝑀))
127 fcoi2 6649 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
128126, 127syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀)) ∘ 𝑥) = 𝑥)
129125, 128eqtrd 2778 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (( I ↾ (Base‘𝑀))(.r𝐴)𝑥) = 𝑥)
130 id 22 . . . 4 (𝑥 ∈ (𝑀 LMHom 𝑀) → 𝑥 ∈ (𝑀 LMHom 𝑀))
1311, 2, 70mendmulr 41013 . . . 4 ((𝑥 ∈ (𝑀 LMHom 𝑀) ∧ ( I ↾ (Base‘𝑀)) ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
132130, 123, 131syl2anr 597 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = (𝑥 ∘ ( I ↾ (Base‘𝑀))))
133 fcoi1 6648 . . . 4 (𝑥:(Base‘𝑀)⟶(Base‘𝑀) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
134126, 133syl 17 . . 3 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥 ∘ ( I ↾ (Base‘𝑀))) = 𝑥)
135132, 134eqtrd 2778 . 2 ((𝑀 ∈ LMod ∧ 𝑥 ∈ (𝑀 LMHom 𝑀)) → (𝑥(.r𝐴)( I ↾ (Base‘𝑀))) = 𝑥)
1363, 4, 5, 69, 74, 90, 107, 122, 123, 129, 135isringd 19824 1 (𝑀 ∈ LMod → 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561   I cid 5488   × cxp 5587  cres 5591  ccom 5593   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  f cof 7531  m cmap 8615  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965  0gc0g 17150  Mndcmnd 18385   MndHom cmhm 18428  Grpcgrp 18577  invgcminusg 18578   GrpHom cghm 18831  Ringcrg 19783  LModclmod 20123   LMHom clmhm 20281  MEndocmend 41000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-grp 18580  df-minusg 18581  df-ghm 18832  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125  df-lmhm 20284  df-mend 41001
This theorem is referenced by:  mendlmod  41018  mendassa  41019
  Copyright terms: Public domain W3C validator