Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mendring Structured version   Visualization version   GIF version

Theorem mendring 42389
Description: The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypothesis
Ref Expression
mendassa.a 𝐴 = (MEndoβ€˜π‘€)
Assertion
Ref Expression
mendring (𝑀 ∈ LMod β†’ 𝐴 ∈ Ring)

Proof of Theorem mendring
Dummy variables π‘₯ 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mendassa.a . . . 4 𝐴 = (MEndoβ€˜π‘€)
21mendbas 42381 . . 3 (𝑀 LMHom 𝑀) = (Baseβ€˜π΄)
32a1i 11 . 2 (𝑀 ∈ LMod β†’ (𝑀 LMHom 𝑀) = (Baseβ€˜π΄))
4 eqidd 2725 . 2 (𝑀 ∈ LMod β†’ (+gβ€˜π΄) = (+gβ€˜π΄))
5 eqidd 2725 . 2 (𝑀 ∈ LMod β†’ (.rβ€˜π΄) = (.rβ€˜π΄))
6 eqid 2724 . . . . . 6 (+gβ€˜π‘€) = (+gβ€˜π‘€)
7 eqid 2724 . . . . . 6 (+gβ€˜π΄) = (+gβ€˜π΄)
81, 2, 6, 7mendplusg 42383 . . . . 5 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(+gβ€˜π΄)𝑦) = (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
96lmhmplusg 20877 . . . . 5 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∈ (𝑀 LMHom 𝑀))
108, 9eqeltrd 2825 . . . 4 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(+gβ€˜π΄)𝑦) ∈ (𝑀 LMHom 𝑀))
11103adant1 1127 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(+gβ€˜π΄)𝑦) ∈ (𝑀 LMHom 𝑀))
12 simpr1 1191 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ π‘₯ ∈ (𝑀 LMHom 𝑀))
13 simpr2 1192 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑦 ∈ (𝑀 LMHom 𝑀))
1412, 13, 9syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∈ (𝑀 LMHom 𝑀))
15 simpr3 1193 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑧 ∈ (𝑀 LMHom 𝑀))
161, 2, 6, 7mendplusg 42383 . . . . 5 (((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ ((π‘₯ ∘f (+gβ€˜π‘€)𝑦)(+gβ€˜π΄)𝑧) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘f (+gβ€˜π‘€)𝑧))
1714, 15, 16syl2anc 583 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯ ∘f (+gβ€˜π‘€)𝑦)(+gβ€˜π΄)𝑧) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘f (+gβ€˜π‘€)𝑧))
1812, 13, 8syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(+gβ€˜π΄)𝑦) = (π‘₯ ∘f (+gβ€˜π‘€)𝑦))
1918oveq1d 7416 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(+gβ€˜π΄)𝑦)(+gβ€˜π΄)𝑧) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦)(+gβ€˜π΄)𝑧))
206lmhmplusg 20877 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (𝑦 ∘f (+gβ€˜π‘€)𝑧) ∈ (𝑀 LMHom 𝑀))
2113, 15, 20syl2anc 583 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦 ∘f (+gβ€˜π‘€)𝑧) ∈ (𝑀 LMHom 𝑀))
221, 2, 6, 7mendplusg 42383 . . . . . 6 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘f (+gβ€˜π‘€)𝑧) ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(+gβ€˜π΄)(𝑦 ∘f (+gβ€˜π‘€)𝑧)) = (π‘₯ ∘f (+gβ€˜π‘€)(𝑦 ∘f (+gβ€˜π‘€)𝑧)))
2312, 21, 22syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(+gβ€˜π΄)(𝑦 ∘f (+gβ€˜π‘€)𝑧)) = (π‘₯ ∘f (+gβ€˜π‘€)(𝑦 ∘f (+gβ€˜π‘€)𝑧)))
241, 2, 6, 7mendplusg 42383 . . . . . . 7 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (𝑦(+gβ€˜π΄)𝑧) = (𝑦 ∘f (+gβ€˜π‘€)𝑧))
2513, 15, 24syl2anc 583 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦(+gβ€˜π΄)𝑧) = (𝑦 ∘f (+gβ€˜π‘€)𝑧))
2625oveq2d 7417 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(+gβ€˜π΄)(𝑦(+gβ€˜π΄)𝑧)) = (π‘₯(+gβ€˜π΄)(𝑦 ∘f (+gβ€˜π‘€)𝑧)))
27 lmodgrp 20698 . . . . . . . 8 (𝑀 ∈ LMod β†’ 𝑀 ∈ Grp)
2827grpmndd 18863 . . . . . . 7 (𝑀 ∈ LMod β†’ 𝑀 ∈ Mnd)
2928adantr 480 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑀 ∈ Mnd)
30 eqid 2724 . . . . . . . . 9 (Baseβ€˜π‘€) = (Baseβ€˜π‘€)
3130, 30lmhmf 20867 . . . . . . . 8 (π‘₯ ∈ (𝑀 LMHom 𝑀) β†’ π‘₯:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
3212, 31syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ π‘₯:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
33 fvex 6894 . . . . . . . 8 (Baseβ€˜π‘€) ∈ V
3433, 33elmap 8860 . . . . . . 7 (π‘₯ ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)) ↔ π‘₯:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
3532, 34sylibr 233 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ π‘₯ ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)))
3630, 30lmhmf 20867 . . . . . . . 8 (𝑦 ∈ (𝑀 LMHom 𝑀) β†’ 𝑦:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
3713, 36syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑦:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
3833, 33elmap 8860 . . . . . . 7 (𝑦 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)) ↔ 𝑦:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
3937, 38sylibr 233 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑦 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)))
4030, 30lmhmf 20867 . . . . . . . 8 (𝑧 ∈ (𝑀 LMHom 𝑀) β†’ 𝑧:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
4115, 40syl 17 . . . . . . 7 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑧:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
4233, 33elmap 8860 . . . . . . 7 (𝑧 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)) ↔ 𝑧:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
4341, 42sylibr 233 . . . . . 6 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑧 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)))
4430, 6mndvass 22204 . . . . . 6 ((𝑀 ∈ Mnd ∧ (π‘₯ ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)) ∧ 𝑦 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)) ∧ 𝑧 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)))) β†’ ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘f (+gβ€˜π‘€)𝑧) = (π‘₯ ∘f (+gβ€˜π‘€)(𝑦 ∘f (+gβ€˜π‘€)𝑧)))
4529, 35, 39, 43, 44syl13anc 1369 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘f (+gβ€˜π‘€)𝑧) = (π‘₯ ∘f (+gβ€˜π‘€)(𝑦 ∘f (+gβ€˜π‘€)𝑧)))
4623, 26, 453eqtr4d 2774 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(+gβ€˜π΄)(𝑦(+gβ€˜π΄)𝑧)) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘f (+gβ€˜π‘€)𝑧))
4717, 19, 463eqtr4d 2774 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(+gβ€˜π΄)𝑦)(+gβ€˜π΄)𝑧) = (π‘₯(+gβ€˜π΄)(𝑦(+gβ€˜π΄)𝑧)))
48 id 22 . . . 4 (𝑀 ∈ LMod β†’ 𝑀 ∈ LMod)
49 eqidd 2725 . . . 4 (𝑀 ∈ LMod β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€))
50 eqid 2724 . . . . 5 (0gβ€˜π‘€) = (0gβ€˜π‘€)
51 eqid 2724 . . . . 5 (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)
5250, 30, 51, 510lmhm 20873 . . . 4 ((𝑀 ∈ LMod ∧ 𝑀 ∈ LMod ∧ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘€)) β†’ ((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}) ∈ (𝑀 LMHom 𝑀))
5348, 48, 49, 52syl3anc 1368 . . 3 (𝑀 ∈ LMod β†’ ((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}) ∈ (𝑀 LMHom 𝑀))
541, 2, 6, 7mendplusg 42383 . . . . 5 ((((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}) ∈ (𝑀 LMHom 𝑀) ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)})(+gβ€˜π΄)π‘₯) = (((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}) ∘f (+gβ€˜π‘€)π‘₯))
5553, 54sylan 579 . . . 4 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)})(+gβ€˜π΄)π‘₯) = (((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}) ∘f (+gβ€˜π‘€)π‘₯))
5631, 34sylibr 233 . . . . 5 (π‘₯ ∈ (𝑀 LMHom 𝑀) β†’ π‘₯ ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)))
5730, 6, 50mndvlid 22205 . . . . 5 ((𝑀 ∈ Mnd ∧ π‘₯ ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€))) β†’ (((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}) ∘f (+gβ€˜π‘€)π‘₯) = π‘₯)
5828, 56, 57syl2an 595 . . . 4 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}) ∘f (+gβ€˜π‘€)π‘₯) = π‘₯)
5955, 58eqtrd 2764 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)})(+gβ€˜π΄)π‘₯) = π‘₯)
60 eqid 2724 . . . . 5 (invgβ€˜π‘€) = (invgβ€˜π‘€)
6160invlmhm 20875 . . . 4 (𝑀 ∈ LMod β†’ (invgβ€˜π‘€) ∈ (𝑀 LMHom 𝑀))
62 lmhmco 20876 . . . 4 (((invgβ€˜π‘€) ∈ (𝑀 LMHom 𝑀) ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ ((invgβ€˜π‘€) ∘ π‘₯) ∈ (𝑀 LMHom 𝑀))
6361, 62sylan 579 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ ((invgβ€˜π‘€) ∘ π‘₯) ∈ (𝑀 LMHom 𝑀))
641, 2, 6, 7mendplusg 42383 . . . . 5 ((((invgβ€˜π‘€) ∘ π‘₯) ∈ (𝑀 LMHom 𝑀) ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((invgβ€˜π‘€) ∘ π‘₯)(+gβ€˜π΄)π‘₯) = (((invgβ€˜π‘€) ∘ π‘₯) ∘f (+gβ€˜π‘€)π‘₯))
6563, 64sylancom 587 . . . 4 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((invgβ€˜π‘€) ∘ π‘₯)(+gβ€˜π΄)π‘₯) = (((invgβ€˜π‘€) ∘ π‘₯) ∘f (+gβ€˜π‘€)π‘₯))
6630, 6, 60, 50grpvlinv 22207 . . . . 5 ((𝑀 ∈ Grp ∧ π‘₯ ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€))) β†’ (((invgβ€˜π‘€) ∘ π‘₯) ∘f (+gβ€˜π‘€)π‘₯) = ((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}))
6727, 56, 66syl2an 595 . . . 4 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((invgβ€˜π‘€) ∘ π‘₯) ∘f (+gβ€˜π‘€)π‘₯) = ((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}))
6865, 67eqtrd 2764 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (((invgβ€˜π‘€) ∘ π‘₯)(+gβ€˜π΄)π‘₯) = ((Baseβ€˜π‘€) Γ— {(0gβ€˜π‘€)}))
693, 4, 11, 47, 53, 59, 63, 68isgrpd 18875 . 2 (𝑀 ∈ LMod β†’ 𝐴 ∈ Grp)
70 eqid 2724 . . . . 5 (.rβ€˜π΄) = (.rβ€˜π΄)
711, 2, 70mendmulr 42385 . . . 4 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)𝑦) = (π‘₯ ∘ 𝑦))
72 lmhmco 20876 . . . 4 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯ ∘ 𝑦) ∈ (𝑀 LMHom 𝑀))
7371, 72eqeltrd 2825 . . 3 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)𝑦) ∈ (𝑀 LMHom 𝑀))
74733adant1 1127 . 2 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)𝑦) ∈ (𝑀 LMHom 𝑀))
75 coass 6254 . . 3 ((π‘₯ ∘ 𝑦) ∘ 𝑧) = (π‘₯ ∘ (𝑦 ∘ 𝑧))
7612, 13, 71syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)𝑦) = (π‘₯ ∘ 𝑦))
7776oveq1d 7416 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(.rβ€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯ ∘ 𝑦)(.rβ€˜π΄)𝑧))
7812, 13, 72syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯ ∘ 𝑦) ∈ (𝑀 LMHom 𝑀))
791, 2, 70mendmulr 42385 . . . . 5 (((π‘₯ ∘ 𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ ((π‘₯ ∘ 𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯ ∘ 𝑦) ∘ 𝑧))
8078, 15, 79syl2anc 583 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯ ∘ 𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯ ∘ 𝑦) ∘ 𝑧))
8177, 80eqtrd 2764 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(.rβ€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯ ∘ 𝑦) ∘ 𝑧))
821, 2, 70mendmulr 42385 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (𝑦(.rβ€˜π΄)𝑧) = (𝑦 ∘ 𝑧))
8313, 15, 82syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦(.rβ€˜π΄)𝑧) = (𝑦 ∘ 𝑧))
8483oveq2d 7417 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)(𝑦(.rβ€˜π΄)𝑧)) = (π‘₯(.rβ€˜π΄)(𝑦 ∘ 𝑧)))
85 lmhmco 20876 . . . . . 6 ((𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀))
8613, 15, 85syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀))
871, 2, 70mendmulr 42385 . . . . 5 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)(𝑦 ∘ 𝑧)) = (π‘₯ ∘ (𝑦 ∘ 𝑧)))
8812, 86, 87syl2anc 583 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)(𝑦 ∘ 𝑧)) = (π‘₯ ∘ (𝑦 ∘ 𝑧)))
8984, 88eqtrd 2764 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)(𝑦(.rβ€˜π΄)𝑧)) = (π‘₯ ∘ (𝑦 ∘ 𝑧)))
9075, 81, 893eqtr4a 2790 . 2 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(.rβ€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = (π‘₯(.rβ€˜π΄)(𝑦(.rβ€˜π΄)𝑧)))
911, 2, 70mendmulr 42385 . . . 4 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘f (+gβ€˜π‘€)𝑧) ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)(𝑦 ∘f (+gβ€˜π‘€)𝑧)) = (π‘₯ ∘ (𝑦 ∘f (+gβ€˜π‘€)𝑧)))
9212, 21, 91syl2anc 583 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)(𝑦 ∘f (+gβ€˜π‘€)𝑧)) = (π‘₯ ∘ (𝑦 ∘f (+gβ€˜π‘€)𝑧)))
9325oveq2d 7417 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)(𝑦(+gβ€˜π΄)𝑧)) = (π‘₯(.rβ€˜π΄)(𝑦 ∘f (+gβ€˜π‘€)𝑧)))
94 lmhmco 20876 . . . . . 6 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯ ∘ 𝑧) ∈ (𝑀 LMHom 𝑀))
9512, 15, 94syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯ ∘ 𝑧) ∈ (𝑀 LMHom 𝑀))
961, 2, 6, 7mendplusg 42383 . . . . 5 (((π‘₯ ∘ 𝑦) ∈ (𝑀 LMHom 𝑀) ∧ (π‘₯ ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) β†’ ((π‘₯ ∘ 𝑦)(+gβ€˜π΄)(π‘₯ ∘ 𝑧)) = ((π‘₯ ∘ 𝑦) ∘f (+gβ€˜π‘€)(π‘₯ ∘ 𝑧)))
9778, 95, 96syl2anc 583 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯ ∘ 𝑦)(+gβ€˜π΄)(π‘₯ ∘ 𝑧)) = ((π‘₯ ∘ 𝑦) ∘f (+gβ€˜π‘€)(π‘₯ ∘ 𝑧)))
981, 2, 70mendmulr 42385 . . . . . 6 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)𝑧) = (π‘₯ ∘ 𝑧))
9912, 15, 98syl2anc 583 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)𝑧) = (π‘₯ ∘ 𝑧))
10076, 99oveq12d 7419 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(.rβ€˜π΄)𝑦)(+gβ€˜π΄)(π‘₯(.rβ€˜π΄)𝑧)) = ((π‘₯ ∘ 𝑦)(+gβ€˜π΄)(π‘₯ ∘ 𝑧)))
101 lmghm 20864 . . . . . 6 (π‘₯ ∈ (𝑀 LMHom 𝑀) β†’ π‘₯ ∈ (𝑀 GrpHom 𝑀))
102 ghmmhm 19136 . . . . . 6 (π‘₯ ∈ (𝑀 GrpHom 𝑀) β†’ π‘₯ ∈ (𝑀 MndHom 𝑀))
10312, 101, 1023syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ π‘₯ ∈ (𝑀 MndHom 𝑀))
10430, 6, 6mhmvlin 22209 . . . . 5 ((π‘₯ ∈ (𝑀 MndHom 𝑀) ∧ 𝑦 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€)) ∧ 𝑧 ∈ ((Baseβ€˜π‘€) ↑m (Baseβ€˜π‘€))) β†’ (π‘₯ ∘ (𝑦 ∘f (+gβ€˜π‘€)𝑧)) = ((π‘₯ ∘ 𝑦) ∘f (+gβ€˜π‘€)(π‘₯ ∘ 𝑧)))
105103, 39, 43, 104syl3anc 1368 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯ ∘ (𝑦 ∘f (+gβ€˜π‘€)𝑧)) = ((π‘₯ ∘ 𝑦) ∘f (+gβ€˜π‘€)(π‘₯ ∘ 𝑧)))
10697, 100, 1053eqtr4d 2774 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(.rβ€˜π΄)𝑦)(+gβ€˜π΄)(π‘₯(.rβ€˜π΄)𝑧)) = (π‘₯ ∘ (𝑦 ∘f (+gβ€˜π‘€)𝑧)))
10792, 93, 1063eqtr4d 2774 . 2 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (π‘₯(.rβ€˜π΄)(𝑦(+gβ€˜π΄)𝑧)) = ((π‘₯(.rβ€˜π΄)𝑦)(+gβ€˜π΄)(π‘₯(.rβ€˜π΄)𝑧)))
1081, 2, 70mendmulr 42385 . . . 4 (((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀)) β†’ ((π‘₯ ∘f (+gβ€˜π‘€)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘ 𝑧))
10914, 15, 108syl2anc 583 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯ ∘f (+gβ€˜π‘€)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘ 𝑧))
11018oveq1d 7416 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(+gβ€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦)(.rβ€˜π΄)𝑧))
1111, 2, 6, 7mendplusg 42383 . . . . 5 (((π‘₯ ∘ 𝑧) ∈ (𝑀 LMHom 𝑀) ∧ (𝑦 ∘ 𝑧) ∈ (𝑀 LMHom 𝑀)) β†’ ((π‘₯ ∘ 𝑧)(+gβ€˜π΄)(𝑦 ∘ 𝑧)) = ((π‘₯ ∘ 𝑧) ∘f (+gβ€˜π‘€)(𝑦 ∘ 𝑧)))
11295, 86, 111syl2anc 583 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯ ∘ 𝑧)(+gβ€˜π΄)(𝑦 ∘ 𝑧)) = ((π‘₯ ∘ 𝑧) ∘f (+gβ€˜π‘€)(𝑦 ∘ 𝑧)))
11399, 83oveq12d 7419 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(.rβ€˜π΄)𝑧)(+gβ€˜π΄)(𝑦(.rβ€˜π΄)𝑧)) = ((π‘₯ ∘ 𝑧)(+gβ€˜π΄)(𝑦 ∘ 𝑧)))
114 ffn 6707 . . . . . 6 (π‘₯:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€) β†’ π‘₯ Fn (Baseβ€˜π‘€))
11512, 31, 1143syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ π‘₯ Fn (Baseβ€˜π‘€))
116 ffn 6707 . . . . . 6 (𝑦:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€) β†’ 𝑦 Fn (Baseβ€˜π‘€))
11713, 36, 1163syl 18 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ 𝑦 Fn (Baseβ€˜π‘€))
11833a1i 11 . . . . 5 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ (Baseβ€˜π‘€) ∈ V)
119 inidm 4210 . . . . 5 ((Baseβ€˜π‘€) ∩ (Baseβ€˜π‘€)) = (Baseβ€˜π‘€)
120115, 117, 41, 118, 118, 118, 119ofco 7686 . . . 4 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘ 𝑧) = ((π‘₯ ∘ 𝑧) ∘f (+gβ€˜π‘€)(𝑦 ∘ 𝑧)))
121112, 113, 1203eqtr4d 2774 . . 3 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(.rβ€˜π΄)𝑧)(+gβ€˜π΄)(𝑦(.rβ€˜π΄)𝑧)) = ((π‘₯ ∘f (+gβ€˜π‘€)𝑦) ∘ 𝑧))
122109, 110, 1213eqtr4d 2774 . 2 ((𝑀 ∈ LMod ∧ (π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ 𝑦 ∈ (𝑀 LMHom 𝑀) ∧ 𝑧 ∈ (𝑀 LMHom 𝑀))) β†’ ((π‘₯(+gβ€˜π΄)𝑦)(.rβ€˜π΄)𝑧) = ((π‘₯(.rβ€˜π΄)𝑧)(+gβ€˜π΄)(𝑦(.rβ€˜π΄)𝑧)))
12330idlmhm 20874 . 2 (𝑀 ∈ LMod β†’ ( I β†Ύ (Baseβ€˜π‘€)) ∈ (𝑀 LMHom 𝑀))
1241, 2, 70mendmulr 42385 . . . 4 ((( I β†Ύ (Baseβ€˜π‘€)) ∈ (𝑀 LMHom 𝑀) ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (( I β†Ύ (Baseβ€˜π‘€))(.rβ€˜π΄)π‘₯) = (( I β†Ύ (Baseβ€˜π‘€)) ∘ π‘₯))
125123, 124sylan 579 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (( I β†Ύ (Baseβ€˜π‘€))(.rβ€˜π΄)π‘₯) = (( I β†Ύ (Baseβ€˜π‘€)) ∘ π‘₯))
12631adantl 481 . . . 4 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ π‘₯:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€))
127 fcoi2 6756 . . . 4 (π‘₯:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€) β†’ (( I β†Ύ (Baseβ€˜π‘€)) ∘ π‘₯) = π‘₯)
128126, 127syl 17 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (( I β†Ύ (Baseβ€˜π‘€)) ∘ π‘₯) = π‘₯)
129125, 128eqtrd 2764 . 2 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (( I β†Ύ (Baseβ€˜π‘€))(.rβ€˜π΄)π‘₯) = π‘₯)
130 id 22 . . . 4 (π‘₯ ∈ (𝑀 LMHom 𝑀) β†’ π‘₯ ∈ (𝑀 LMHom 𝑀))
1311, 2, 70mendmulr 42385 . . . 4 ((π‘₯ ∈ (𝑀 LMHom 𝑀) ∧ ( I β†Ύ (Baseβ€˜π‘€)) ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)( I β†Ύ (Baseβ€˜π‘€))) = (π‘₯ ∘ ( I β†Ύ (Baseβ€˜π‘€))))
132130, 123, 131syl2anr 596 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)( I β†Ύ (Baseβ€˜π‘€))) = (π‘₯ ∘ ( I β†Ύ (Baseβ€˜π‘€))))
133 fcoi1 6755 . . . 4 (π‘₯:(Baseβ€˜π‘€)⟢(Baseβ€˜π‘€) β†’ (π‘₯ ∘ ( I β†Ύ (Baseβ€˜π‘€))) = π‘₯)
134126, 133syl 17 . . 3 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯ ∘ ( I β†Ύ (Baseβ€˜π‘€))) = π‘₯)
135132, 134eqtrd 2764 . 2 ((𝑀 ∈ LMod ∧ π‘₯ ∈ (𝑀 LMHom 𝑀)) β†’ (π‘₯(.rβ€˜π΄)( I β†Ύ (Baseβ€˜π‘€))) = π‘₯)
1363, 4, 5, 69, 74, 90, 107, 122, 123, 129, 135isringd 20175 1 (𝑀 ∈ LMod β†’ 𝐴 ∈ Ring)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  Vcvv 3466  {csn 4620   I cid 5563   Γ— cxp 5664   β†Ύ cres 5668   ∘ ccom 5670   Fn wfn 6528  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ∘f cof 7661   ↑m cmap 8815  Basecbs 17140  +gcplusg 17193  .rcmulr 17194  Scalarcsca 17196  0gc0g 17381  Mndcmnd 18654   MndHom cmhm 18698  Grpcgrp 18850  invgcminusg 18851   GrpHom cghm 19123  Ringcrg 20123  LModclmod 20691   LMHom clmhm 20852  MEndocmend 42372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-0g 17383  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-mhm 18700  df-grp 18853  df-minusg 18854  df-ghm 19124  df-cmn 19687  df-abl 19688  df-mgp 20025  df-rng 20043  df-ur 20072  df-ring 20125  df-lmod 20693  df-lmhm 20855  df-mend 42373
This theorem is referenced by:  mendlmod  42390  mendassa  42391
  Copyright terms: Public domain W3C validator