| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem1-rN | Structured version Visualization version GIF version | ||
| Description: Lemma for eringring 41016. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ernggrp.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
| ernggrp.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
| ernggrplem.b-r | ⊢ 𝐵 = (Base‘𝐾) |
| ernggrplem.t-r | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| ernggrplem.e-r | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| ernggrplem.p-r | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
| ernggrplem.o-r | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| ernggrplem.i-r | ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
| Ref | Expression |
|---|---|
| erngdvlem1-rN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ernggrp.h-r | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | ernggrplem.t-r | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 3 | ernggrplem.e-r | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 4 | ernggrp.d-r | . . . 4 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
| 5 | eqid 2736 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
| 6 | 1, 2, 3, 4, 5 | erngbase-rN 40833 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
| 7 | 6 | eqcomd 2742 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
| 8 | ernggrplem.p-r | . . 3 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
| 9 | eqid 2736 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
| 10 | 1, 2, 3, 4, 9 | erngfplus-rN 40834 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
| 11 | 8, 10 | eqtr4id 2790 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
| 12 | 1, 2, 3, 8 | tendoplcl 40805 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) ∈ 𝐸) |
| 13 | 1, 2, 3, 8 | tendoplass 40807 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡)𝑃𝑢) = (𝑠𝑃(𝑡𝑃𝑢))) |
| 14 | ernggrplem.b-r | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 15 | ernggrplem.o-r | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 16 | 14, 1, 2, 3, 15 | tendo0cl 40814 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| 17 | 14, 1, 2, 3, 15, 8 | tendo0pl 40815 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑂𝑃𝑠) = 𝑠) |
| 18 | ernggrplem.i-r | . . 3 ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | |
| 19 | 1, 2, 3, 18 | tendoicl 40820 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝐼‘𝑠) ∈ 𝐸) |
| 20 | 1, 2, 3, 18, 14, 8, 15 | tendoipl 40821 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → ((𝐼‘𝑠)𝑃𝑠) = 𝑂) |
| 21 | 7, 11, 12, 13, 16, 17, 19, 20 | isgrpd 18946 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5206 I cid 5552 ◡ccnv 5658 ↾ cres 5661 ∘ ccom 5663 ‘cfv 6536 ∈ cmpo 7412 Basecbs 17233 +gcplusg 17276 Grpcgrp 18921 HLchlt 39373 LHypclh 40008 LTrncltrn 40125 TEndoctendo 40776 EDRingRcedring-rN 40778 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-slot 17206 df-ndx 17218 df-base 17234 df-plusg 17289 df-mulr 17290 df-0g 17460 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 df-lplanes 39523 df-lvols 39524 df-lines 39525 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-tendo 40779 df-edring-rN 40780 |
| This theorem is referenced by: erngdvlem2-rN 41021 erngdvlem3-rN 41022 erngdvlem4-rN 41023 |
| Copyright terms: Public domain | W3C validator |