![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem1-rN | Structured version Visualization version GIF version |
Description: Lemma for eringring 40460. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ernggrp.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
ernggrp.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
ernggrplem.b-r | ⊢ 𝐵 = (Base‘𝐾) |
ernggrplem.t-r | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
ernggrplem.e-r | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
ernggrplem.p-r | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
ernggrplem.o-r | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
ernggrplem.i-r | ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
Ref | Expression |
---|---|
erngdvlem1-rN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ernggrp.h-r | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | ernggrplem.t-r | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | ernggrplem.e-r | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | ernggrp.d-r | . . . 4 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
5 | eqid 2728 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngbase-rN 40277 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
7 | 6 | eqcomd 2734 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
8 | ernggrplem.p-r | . . 3 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
9 | eqid 2728 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
10 | 1, 2, 3, 4, 9 | erngfplus-rN 40278 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
11 | 8, 10 | eqtr4id 2787 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
12 | 1, 2, 3, 8 | tendoplcl 40249 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) ∈ 𝐸) |
13 | 1, 2, 3, 8 | tendoplass 40251 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡)𝑃𝑢) = (𝑠𝑃(𝑡𝑃𝑢))) |
14 | ernggrplem.b-r | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
15 | ernggrplem.o-r | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
16 | 14, 1, 2, 3, 15 | tendo0cl 40258 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
17 | 14, 1, 2, 3, 15, 8 | tendo0pl 40259 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑂𝑃𝑠) = 𝑠) |
18 | ernggrplem.i-r | . . 3 ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | |
19 | 1, 2, 3, 18 | tendoicl 40264 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝐼‘𝑠) ∈ 𝐸) |
20 | 1, 2, 3, 18, 14, 8, 15 | tendoipl 40265 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → ((𝐼‘𝑠)𝑃𝑠) = 𝑂) |
21 | 7, 11, 12, 13, 16, 17, 19, 20 | isgrpd 18909 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ↦ cmpt 5226 I cid 5570 ◡ccnv 5672 ↾ cres 5675 ∘ ccom 5677 ‘cfv 6543 ∈ cmpo 7417 Basecbs 17174 +gcplusg 17227 Grpcgrp 18884 HLchlt 38817 LHypclh 39452 LTrncltrn 39569 TEndoctendo 40220 EDRingRcedring-rN 40222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-riotaBAD 38420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4905 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-undef 8273 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-struct 17110 df-slot 17145 df-ndx 17157 df-base 17175 df-plusg 17240 df-mulr 17241 df-0g 17417 df-proset 18281 df-poset 18299 df-plt 18316 df-lub 18332 df-glb 18333 df-join 18334 df-meet 18335 df-p0 18411 df-p1 18412 df-lat 18418 df-clat 18485 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-grp 18887 df-oposet 38643 df-ol 38645 df-oml 38646 df-covers 38733 df-ats 38734 df-atl 38765 df-cvlat 38789 df-hlat 38818 df-llines 38966 df-lplanes 38967 df-lvols 38968 df-lines 38969 df-psubsp 38971 df-pmap 38972 df-padd 39264 df-lhyp 39456 df-laut 39457 df-ldil 39572 df-ltrn 39573 df-trl 39627 df-tendo 40223 df-edring-rN 40224 |
This theorem is referenced by: erngdvlem2-rN 40465 erngdvlem3-rN 40466 erngdvlem4-rN 40467 |
Copyright terms: Public domain | W3C validator |