![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > erngdvlem1-rN | Structured version Visualization version GIF version |
Description: Lemma for eringring 40949. (Contributed by NM, 4-Aug-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ernggrp.h-r | ⊢ 𝐻 = (LHyp‘𝐾) |
ernggrp.d-r | ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) |
ernggrplem.b-r | ⊢ 𝐵 = (Base‘𝐾) |
ernggrplem.t-r | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
ernggrplem.e-r | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
ernggrplem.p-r | ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) |
ernggrplem.o-r | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
ernggrplem.i-r | ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) |
Ref | Expression |
---|---|
erngdvlem1-rN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ernggrp.h-r | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | ernggrplem.t-r | . . . 4 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
3 | ernggrplem.e-r | . . . 4 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
4 | ernggrp.d-r | . . . 4 ⊢ 𝐷 = ((EDRingR‘𝐾)‘𝑊) | |
5 | eqid 2740 | . . . 4 ⊢ (Base‘𝐷) = (Base‘𝐷) | |
6 | 1, 2, 3, 4, 5 | erngbase-rN 40766 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐷) = 𝐸) |
7 | 6 | eqcomd 2746 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐸 = (Base‘𝐷)) |
8 | ernggrplem.p-r | . . 3 ⊢ 𝑃 = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓)))) | |
9 | eqid 2740 | . . . 4 ⊢ (+g‘𝐷) = (+g‘𝐷) | |
10 | 1, 2, 3, 4, 9 | erngfplus-rN 40767 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (+g‘𝐷) = (𝑎 ∈ 𝐸, 𝑏 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ((𝑎‘𝑓) ∘ (𝑏‘𝑓))))) |
11 | 8, 10 | eqtr4id 2799 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑃 = (+g‘𝐷)) |
12 | 1, 2, 3, 8 | tendoplcl 40738 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸) → (𝑠𝑃𝑡) ∈ 𝐸) |
13 | 1, 2, 3, 8 | tendoplass 40740 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑠 ∈ 𝐸 ∧ 𝑡 ∈ 𝐸 ∧ 𝑢 ∈ 𝐸)) → ((𝑠𝑃𝑡)𝑃𝑢) = (𝑠𝑃(𝑡𝑃𝑢))) |
14 | ernggrplem.b-r | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
15 | ernggrplem.o-r | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
16 | 14, 1, 2, 3, 15 | tendo0cl 40747 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
17 | 14, 1, 2, 3, 15, 8 | tendo0pl 40748 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝑂𝑃𝑠) = 𝑠) |
18 | ernggrplem.i-r | . . 3 ⊢ 𝐼 = (𝑎 ∈ 𝐸 ↦ (𝑓 ∈ 𝑇 ↦ ◡(𝑎‘𝑓))) | |
19 | 1, 2, 3, 18 | tendoicl 40753 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → (𝐼‘𝑠) ∈ 𝐸) |
20 | 1, 2, 3, 18, 14, 8, 15 | tendoipl 40754 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑠 ∈ 𝐸) → ((𝐼‘𝑠)𝑃𝑠) = 𝑂) |
21 | 7, 11, 12, 13, 16, 17, 19, 20 | isgrpd 18998 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐷 ∈ Grp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ↦ cmpt 5249 I cid 5592 ◡ccnv 5699 ↾ cres 5702 ∘ ccom 5704 ‘cfv 6573 ∈ cmpo 7450 Basecbs 17258 +gcplusg 17311 Grpcgrp 18973 HLchlt 39306 LHypclh 39941 LTrncltrn 40058 TEndoctendo 40709 EDRingRcedring-rN 40711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-mulr 17325 df-0g 17501 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tendo 40712 df-edring-rN 40713 |
This theorem is referenced by: erngdvlem2-rN 40954 erngdvlem3-rN 40955 erngdvlem4-rN 40956 |
Copyright terms: Public domain | W3C validator |