| Step | Hyp | Ref
| Expression |
| 1 | | tgrpset.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 2 | | tgrpset.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 3 | | tgrpset.g |
. . . 4
⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) |
| 4 | | eqid 2734 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 5 | 1, 2, 3, 4 | tgrpbase 40689 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐺) = 𝑇) |
| 6 | 5 | eqcomd 2740 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 = (Base‘𝐺)) |
| 7 | | tgrp.o |
. . 3
⊢ + =
(+g‘𝐺) |
| 8 | 7 | a1i 11 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + =
(+g‘𝐺)) |
| 9 | 1, 2, 3, 7 | tgrpov 40691 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
| 10 | 9 | 3expa 1118 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
| 11 | 10 | 3impb 1114 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
| 12 | 1, 2 | ltrnco 40662 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥 ∘ 𝑦) ∈ 𝑇) |
| 13 | 11, 12 | eqeltrd 2833 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥 + 𝑦) ∈ 𝑇) |
| 14 | | coass 6267 |
. . 3
⊢ ((𝑥 ∘ 𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦 ∘ 𝑧)) |
| 15 | | simpll 766 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝐾 ∈ HL) |
| 16 | | simplr 768 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑊 ∈ 𝐻) |
| 17 | | simpr1 1194 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑥 ∈ 𝑇) |
| 18 | | simpr2 1195 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑦 ∈ 𝑇) |
| 19 | 15, 16, 17, 18, 9 | syl112anc 1375 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
| 20 | 19 | oveq1d 7429 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) + 𝑧)) |
| 21 | | simpl 482 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 22 | 21, 17, 18, 12 | syl3anc 1372 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 ∘ 𝑦) ∈ 𝑇) |
| 23 | | simpr3 1196 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑧 ∈ 𝑇) |
| 24 | 1, 2, 3, 7 | tgrpov 40691 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ((𝑥 ∘ 𝑦) ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 ∘ 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
| 25 | 15, 16, 22, 23, 24 | syl112anc 1375 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 ∘ 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
| 26 | 20, 25 | eqtrd 2769 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
| 27 | 1, 2, 3, 7 | tgrpov 40691 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑦 + 𝑧) = (𝑦 ∘ 𝑧)) |
| 28 | 15, 16, 18, 23, 27 | syl112anc 1375 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑦 + 𝑧) = (𝑦 ∘ 𝑧)) |
| 29 | 28 | oveq2d 7430 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 + (𝑦 ∘ 𝑧))) |
| 30 | 1, 2 | ltrnco 40662 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (𝑦 ∘ 𝑧) ∈ 𝑇) |
| 31 | 21, 18, 23, 30 | syl3anc 1372 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑦 ∘ 𝑧) ∈ 𝑇) |
| 32 | 1, 2, 3, 7 | tgrpov 40691 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑥 ∈ 𝑇 ∧ (𝑦 ∘ 𝑧) ∈ 𝑇)) → (𝑥 + (𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
| 33 | 15, 16, 17, 31, 32 | syl112anc 1375 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + (𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
| 34 | 29, 33 | eqtrd 2769 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
| 35 | 14, 26, 34 | 3eqtr4a 2795 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 36 | | tgrp.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
| 37 | 36, 1, 2 | idltrn 40093 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
| 38 | | simpll 766 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝐾 ∈ HL) |
| 39 | | simplr 768 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝑊 ∈ 𝐻) |
| 40 | 37 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → ( I ↾ 𝐵) ∈ 𝑇) |
| 41 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑇) |
| 42 | 1, 2, 3, 7 | tgrpov 40691 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥)) |
| 43 | 38, 39, 40, 41, 42 | syl112anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥)) |
| 44 | 36, 1, 2 | ltrn1o 40067 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝑥:𝐵–1-1-onto→𝐵) |
| 45 | | f1of 6829 |
. . . 4
⊢ (𝑥:𝐵–1-1-onto→𝐵 → 𝑥:𝐵⟶𝐵) |
| 46 | | fcoi2 6764 |
. . . 4
⊢ (𝑥:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥) |
| 47 | 44, 45, 46 | 3syl 18 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥) |
| 48 | 43, 47 | eqtrd 2769 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (( I ↾ 𝐵) + 𝑥) = 𝑥) |
| 49 | 1, 2 | ltrncnv 40089 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → ◡𝑥 ∈ 𝑇) |
| 50 | 1, 2, 3, 7 | tgrpov 40691 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (◡𝑥 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) → (◡𝑥 + 𝑥) = (◡𝑥 ∘ 𝑥)) |
| 51 | 38, 39, 49, 41, 50 | syl112anc 1375 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (◡𝑥 + 𝑥) = (◡𝑥 ∘ 𝑥)) |
| 52 | | f1ococnv1 6858 |
. . . 4
⊢ (𝑥:𝐵–1-1-onto→𝐵 → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐵)) |
| 53 | 44, 52 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐵)) |
| 54 | 51, 53 | eqtrd 2769 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (◡𝑥 + 𝑥) = ( I ↾ 𝐵)) |
| 55 | 6, 8, 13, 35, 37, 48, 49, 54 | isgrpd 18950 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Grp) |