Step | Hyp | Ref
| Expression |
1 | | tgrpset.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
2 | | tgrpset.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
3 | | tgrpset.g |
. . . 4
⊢ 𝐺 = ((TGrp‘𝐾)‘𝑊) |
4 | | eqid 2738 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
5 | 1, 2, 3, 4 | tgrpbase 38687 |
. . 3
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (Base‘𝐺) = 𝑇) |
6 | 5 | eqcomd 2744 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑇 = (Base‘𝐺)) |
7 | | tgrp.o |
. . 3
⊢ + =
(+g‘𝐺) |
8 | 7 | a1i 11 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → + =
(+g‘𝐺)) |
9 | 1, 2, 3, 7 | tgrpov 38689 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
10 | 9 | 3expa 1116 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇)) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
11 | 10 | 3impb 1113 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
12 | 1, 2 | ltrnco 38660 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥 ∘ 𝑦) ∈ 𝑇) |
13 | 11, 12 | eqeltrd 2839 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇) → (𝑥 + 𝑦) ∈ 𝑇) |
14 | | coass 6158 |
. . 3
⊢ ((𝑥 ∘ 𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦 ∘ 𝑧)) |
15 | | simpll 763 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝐾 ∈ HL) |
16 | | simplr 765 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑊 ∈ 𝐻) |
17 | | simpr1 1192 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑥 ∈ 𝑇) |
18 | | simpr2 1193 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑦 ∈ 𝑇) |
19 | 15, 16, 17, 18, 9 | syl112anc 1372 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + 𝑦) = (𝑥 ∘ 𝑦)) |
20 | 19 | oveq1d 7270 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) + 𝑧)) |
21 | | simpl 482 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
22 | 21, 17, 18, 12 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 ∘ 𝑦) ∈ 𝑇) |
23 | | simpr3 1194 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → 𝑧 ∈ 𝑇) |
24 | 1, 2, 3, 7 | tgrpov 38689 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ ((𝑥 ∘ 𝑦) ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 ∘ 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
25 | 15, 16, 22, 23, 24 | syl112anc 1372 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 ∘ 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
26 | 20, 25 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥 ∘ 𝑦) ∘ 𝑧)) |
27 | 1, 2, 3, 7 | tgrpov 38689 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑦 + 𝑧) = (𝑦 ∘ 𝑧)) |
28 | 15, 16, 18, 23, 27 | syl112anc 1372 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑦 + 𝑧) = (𝑦 ∘ 𝑧)) |
29 | 28 | oveq2d 7271 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 + (𝑦 ∘ 𝑧))) |
30 | 1, 2 | ltrnco 38660 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇) → (𝑦 ∘ 𝑧) ∈ 𝑇) |
31 | 21, 18, 23, 30 | syl3anc 1369 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑦 ∘ 𝑧) ∈ 𝑇) |
32 | 1, 2, 3, 7 | tgrpov 38689 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (𝑥 ∈ 𝑇 ∧ (𝑦 ∘ 𝑧) ∈ 𝑇)) → (𝑥 + (𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
33 | 15, 16, 17, 31, 32 | syl112anc 1372 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + (𝑦 ∘ 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
34 | 29, 33 | eqtrd 2778 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 ∘ (𝑦 ∘ 𝑧))) |
35 | 14, 26, 34 | 3eqtr4a 2805 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑦 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
36 | | tgrp.b |
. . 3
⊢ 𝐵 = (Base‘𝐾) |
37 | 36, 1, 2 | idltrn 38091 |
. 2
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
38 | | simpll 763 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝐾 ∈ HL) |
39 | | simplr 765 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝑊 ∈ 𝐻) |
40 | 37 | adantr 480 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → ( I ↾ 𝐵) ∈ 𝑇) |
41 | | simpr 484 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝑥 ∈ 𝑇) |
42 | 1, 2, 3, 7 | tgrpov 38689 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (( I ↾ 𝐵) ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥)) |
43 | 38, 39, 40, 41, 42 | syl112anc 1372 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥)) |
44 | 36, 1, 2 | ltrn1o 38065 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → 𝑥:𝐵–1-1-onto→𝐵) |
45 | | f1of 6700 |
. . . 4
⊢ (𝑥:𝐵–1-1-onto→𝐵 → 𝑥:𝐵⟶𝐵) |
46 | | fcoi2 6633 |
. . . 4
⊢ (𝑥:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥) |
47 | 44, 45, 46 | 3syl 18 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥) |
48 | 43, 47 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (( I ↾ 𝐵) + 𝑥) = 𝑥) |
49 | 1, 2 | ltrncnv 38087 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → ◡𝑥 ∈ 𝑇) |
50 | 1, 2, 3, 7 | tgrpov 38689 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻 ∧ (◡𝑥 ∈ 𝑇 ∧ 𝑥 ∈ 𝑇)) → (◡𝑥 + 𝑥) = (◡𝑥 ∘ 𝑥)) |
51 | 38, 39, 49, 41, 50 | syl112anc 1372 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (◡𝑥 + 𝑥) = (◡𝑥 ∘ 𝑥)) |
52 | | f1ococnv1 6728 |
. . . 4
⊢ (𝑥:𝐵–1-1-onto→𝐵 → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐵)) |
53 | 44, 52 | syl 17 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (◡𝑥 ∘ 𝑥) = ( I ↾ 𝐵)) |
54 | 51, 53 | eqtrd 2778 |
. 2
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑥 ∈ 𝑇) → (◡𝑥 + 𝑥) = ( I ↾ 𝐵)) |
55 | 6, 8, 13, 35, 37, 48, 49, 54 | isgrpd 18516 |
1
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐺 ∈ Grp) |