Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpgrplem Structured version   Visualization version   GIF version

Theorem tgrpgrplem 40732
Description: Lemma for tgrpgrp 40733. (Contributed by NM, 6-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
tgrpset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tgrpset.g 𝐺 = ((TGrp‘𝐾)‘𝑊)
tgrp.o + = (+g𝐺)
tgrp.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
tgrpgrplem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)

Proof of Theorem tgrpgrplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tgrpset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tgrpset.g . . . 4 𝐺 = ((TGrp‘𝐾)‘𝑊)
4 eqid 2729 . . . 4 (Base‘𝐺) = (Base‘𝐺)
51, 2, 3, 4tgrpbase 40729 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐺) = 𝑇)
65eqcomd 2735 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝐺))
7 tgrp.o . . 3 + = (+g𝐺)
87a1i 11 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝐺))
91, 2, 3, 7tgrpov 40731 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
1093expa 1118 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
11103impb 1114 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) = (𝑥𝑦))
121, 2ltrnco 40702 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥𝑦) ∈ 𝑇)
1311, 12eqeltrd 2828 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) ∈ 𝑇)
14 coass 6214 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
15 simpll 766 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝐾 ∈ HL)
16 simplr 768 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑊𝐻)
17 simpr1 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑥𝑇)
18 simpr2 1196 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑦𝑇)
1915, 16, 17, 18, 9syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
2019oveq1d 7364 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) + 𝑧))
21 simpl 482 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2221, 17, 18, 12syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥𝑦) ∈ 𝑇)
23 simpr3 1197 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑧𝑇)
241, 2, 3, 7tgrpov 40731 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ((𝑥𝑦) ∈ 𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2515, 16, 22, 23, 24syl112anc 1376 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2620, 25eqtrd 2764 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
271, 2, 3, 7tgrpov 40731 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2815, 16, 18, 23, 27syl112anc 1376 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2928oveq2d 7365 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 + (𝑦𝑧)))
301, 2ltrnco 40702 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝑇𝑧𝑇) → (𝑦𝑧) ∈ 𝑇)
3121, 18, 23, 30syl3anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦𝑧) ∈ 𝑇)
321, 2, 3, 7tgrpov 40731 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇 ∧ (𝑦𝑧) ∈ 𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3315, 16, 17, 31, 32syl112anc 1376 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3429, 33eqtrd 2764 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3514, 26, 343eqtr4a 2790 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
36 tgrp.b . . 3 𝐵 = (Base‘𝐾)
3736, 1, 2idltrn 40133 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
38 simpll 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝐾 ∈ HL)
39 simplr 768 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑊𝐻)
4037adantr 480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → ( I ↾ 𝐵) ∈ 𝑇)
41 simpr 484 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
421, 2, 3, 7tgrpov 40731 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (( I ↾ 𝐵) ∈ 𝑇𝑥𝑇)) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4338, 39, 40, 41, 42syl112anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4436, 1, 2ltrn1o 40107 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥:𝐵1-1-onto𝐵)
45 f1of 6764 . . . 4 (𝑥:𝐵1-1-onto𝐵𝑥:𝐵𝐵)
46 fcoi2 6699 . . . 4 (𝑥:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4744, 45, 463syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4843, 47eqtrd 2764 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = 𝑥)
491, 2ltrncnv 40129 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
501, 2, 3, 7tgrpov 40731 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑥𝑇)) → (𝑥 + 𝑥) = (𝑥𝑥))
5138, 39, 49, 41, 50syl112anc 1376 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = (𝑥𝑥))
52 f1ococnv1 6793 . . . 4 (𝑥:𝐵1-1-onto𝐵 → (𝑥𝑥) = ( I ↾ 𝐵))
5344, 52syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥𝑥) = ( I ↾ 𝐵))
5451, 53eqtrd 2764 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = ( I ↾ 𝐵))
556, 8, 13, 35, 37, 48, 49, 54isgrpd 18837 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109   I cid 5513  ccnv 5618  cres 5621  ccom 5623  wf 6478  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  Grpcgrp 18812  HLchlt 39333  LHypclh 39967  LTrncltrn 40084  TGrpctgrp 40725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-riotaBAD 38936
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-undef 8206  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-0g 17345  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-oposet 39159  df-ol 39161  df-oml 39162  df-covers 39249  df-ats 39250  df-atl 39281  df-cvlat 39305  df-hlat 39334  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142  df-tgrp 40726
This theorem is referenced by:  tgrpgrp  40733
  Copyright terms: Public domain W3C validator