Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpgrplem Structured version   Visualization version   GIF version

Theorem tgrpgrplem 39212
Description: Lemma for tgrpgrp 39213. (Contributed by NM, 6-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
tgrpset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tgrpset.g 𝐺 = ((TGrp‘𝐾)‘𝑊)
tgrp.o + = (+g𝐺)
tgrp.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
tgrpgrplem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)

Proof of Theorem tgrpgrplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tgrpset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tgrpset.g . . . 4 𝐺 = ((TGrp‘𝐾)‘𝑊)
4 eqid 2736 . . . 4 (Base‘𝐺) = (Base‘𝐺)
51, 2, 3, 4tgrpbase 39209 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐺) = 𝑇)
65eqcomd 2742 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝐺))
7 tgrp.o . . 3 + = (+g𝐺)
87a1i 11 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝐺))
91, 2, 3, 7tgrpov 39211 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
1093expa 1118 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
11103impb 1115 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) = (𝑥𝑦))
121, 2ltrnco 39182 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥𝑦) ∈ 𝑇)
1311, 12eqeltrd 2838 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) ∈ 𝑇)
14 coass 6217 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
15 simpll 765 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝐾 ∈ HL)
16 simplr 767 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑊𝐻)
17 simpr1 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑥𝑇)
18 simpr2 1195 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑦𝑇)
1915, 16, 17, 18, 9syl112anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
2019oveq1d 7372 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) + 𝑧))
21 simpl 483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2221, 17, 18, 12syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥𝑦) ∈ 𝑇)
23 simpr3 1196 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑧𝑇)
241, 2, 3, 7tgrpov 39211 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ((𝑥𝑦) ∈ 𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2515, 16, 22, 23, 24syl112anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2620, 25eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
271, 2, 3, 7tgrpov 39211 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2815, 16, 18, 23, 27syl112anc 1374 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2928oveq2d 7373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 + (𝑦𝑧)))
301, 2ltrnco 39182 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝑇𝑧𝑇) → (𝑦𝑧) ∈ 𝑇)
3121, 18, 23, 30syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦𝑧) ∈ 𝑇)
321, 2, 3, 7tgrpov 39211 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇 ∧ (𝑦𝑧) ∈ 𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3315, 16, 17, 31, 32syl112anc 1374 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3429, 33eqtrd 2776 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3514, 26, 343eqtr4a 2802 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
36 tgrp.b . . 3 𝐵 = (Base‘𝐾)
3736, 1, 2idltrn 38613 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
38 simpll 765 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝐾 ∈ HL)
39 simplr 767 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑊𝐻)
4037adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → ( I ↾ 𝐵) ∈ 𝑇)
41 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
421, 2, 3, 7tgrpov 39211 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (( I ↾ 𝐵) ∈ 𝑇𝑥𝑇)) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4338, 39, 40, 41, 42syl112anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4436, 1, 2ltrn1o 38587 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥:𝐵1-1-onto𝐵)
45 f1of 6784 . . . 4 (𝑥:𝐵1-1-onto𝐵𝑥:𝐵𝐵)
46 fcoi2 6717 . . . 4 (𝑥:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4744, 45, 463syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4843, 47eqtrd 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = 𝑥)
491, 2ltrncnv 38609 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
501, 2, 3, 7tgrpov 39211 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑥𝑇)) → (𝑥 + 𝑥) = (𝑥𝑥))
5138, 39, 49, 41, 50syl112anc 1374 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = (𝑥𝑥))
52 f1ococnv1 6813 . . . 4 (𝑥:𝐵1-1-onto𝐵 → (𝑥𝑥) = ( I ↾ 𝐵))
5344, 52syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥𝑥) = ( I ↾ 𝐵))
5451, 53eqtrd 2776 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = ( I ↾ 𝐵))
556, 8, 13, 35, 37, 48, 49, 54isgrpd 18772 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106   I cid 5530  ccnv 5632  cres 5635  ccom 5637  wf 6492  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357  Basecbs 17083  +gcplusg 17133  Grpcgrp 18748  HLchlt 37812  LHypclh 38447  LTrncltrn 38564  TGrpctgrp 39205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-0g 17323  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206
This theorem is referenced by:  tgrpgrp  39213
  Copyright terms: Public domain W3C validator