Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpgrplem Structured version   Visualization version   GIF version

Theorem tgrpgrplem 38763
Description: Lemma for tgrpgrp 38764. (Contributed by NM, 6-Jun-2013.)
Hypotheses
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
tgrpset.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tgrpset.g 𝐺 = ((TGrp‘𝐾)‘𝑊)
tgrp.o + = (+g𝐺)
tgrp.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
tgrpgrplem ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)

Proof of Theorem tgrpgrplem
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tgrpset.h . . . 4 𝐻 = (LHyp‘𝐾)
2 tgrpset.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
3 tgrpset.g . . . 4 𝐺 = ((TGrp‘𝐾)‘𝑊)
4 eqid 2738 . . . 4 (Base‘𝐺) = (Base‘𝐺)
51, 2, 3, 4tgrpbase 38760 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐺) = 𝑇)
65eqcomd 2744 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑇 = (Base‘𝐺))
7 tgrp.o . . 3 + = (+g𝐺)
87a1i 11 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → + = (+g𝐺))
91, 2, 3, 7tgrpov 38762 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
1093expa 1117 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
11103impb 1114 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) = (𝑥𝑦))
121, 2ltrnco 38733 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥𝑦) ∈ 𝑇)
1311, 12eqeltrd 2839 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇𝑦𝑇) → (𝑥 + 𝑦) ∈ 𝑇)
14 coass 6169 . . 3 ((𝑥𝑦) ∘ 𝑧) = (𝑥 ∘ (𝑦𝑧))
15 simpll 764 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝐾 ∈ HL)
16 simplr 766 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑊𝐻)
17 simpr1 1193 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑥𝑇)
18 simpr2 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑦𝑇)
1915, 16, 17, 18, 9syl112anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + 𝑦) = (𝑥𝑦))
2019oveq1d 7290 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) + 𝑧))
21 simpl 483 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2221, 17, 18, 12syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥𝑦) ∈ 𝑇)
23 simpr3 1195 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → 𝑧𝑇)
241, 2, 3, 7tgrpov 38762 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ ((𝑥𝑦) ∈ 𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2515, 16, 22, 23, 24syl112anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
2620, 25eqtrd 2778 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = ((𝑥𝑦) ∘ 𝑧))
271, 2, 3, 7tgrpov 38762 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2815, 16, 18, 23, 27syl112anc 1373 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦 + 𝑧) = (𝑦𝑧))
2928oveq2d 7291 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 + (𝑦𝑧)))
301, 2ltrnco 38733 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑦𝑇𝑧𝑇) → (𝑦𝑧) ∈ 𝑇)
3121, 18, 23, 30syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑦𝑧) ∈ 𝑇)
321, 2, 3, 7tgrpov 38762 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇 ∧ (𝑦𝑧) ∈ 𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3315, 16, 17, 31, 32syl112anc 1373 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3429, 33eqtrd 2778 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → (𝑥 + (𝑦 + 𝑧)) = (𝑥 ∘ (𝑦𝑧)))
3514, 26, 343eqtr4a 2804 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑥𝑇𝑦𝑇𝑧𝑇)) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
36 tgrp.b . . 3 𝐵 = (Base‘𝐾)
3736, 1, 2idltrn 38164 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
38 simpll 764 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝐾 ∈ HL)
39 simplr 766 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑊𝐻)
4037adantr 481 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → ( I ↾ 𝐵) ∈ 𝑇)
41 simpr 485 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
421, 2, 3, 7tgrpov 38762 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (( I ↾ 𝐵) ∈ 𝑇𝑥𝑇)) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4338, 39, 40, 41, 42syl112anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = (( I ↾ 𝐵) ∘ 𝑥))
4436, 1, 2ltrn1o 38138 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥:𝐵1-1-onto𝐵)
45 f1of 6716 . . . 4 (𝑥:𝐵1-1-onto𝐵𝑥:𝐵𝐵)
46 fcoi2 6649 . . . 4 (𝑥:𝐵𝐵 → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4744, 45, 463syl 18 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) ∘ 𝑥) = 𝑥)
4843, 47eqtrd 2778 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (( I ↾ 𝐵) + 𝑥) = 𝑥)
491, 2ltrncnv 38160 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → 𝑥𝑇)
501, 2, 3, 7tgrpov 38762 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝑥𝑇𝑥𝑇)) → (𝑥 + 𝑥) = (𝑥𝑥))
5138, 39, 49, 41, 50syl112anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = (𝑥𝑥))
52 f1ococnv1 6745 . . . 4 (𝑥:𝐵1-1-onto𝐵 → (𝑥𝑥) = ( I ↾ 𝐵))
5344, 52syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥𝑥) = ( I ↾ 𝐵))
5451, 53eqtrd 2778 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑥𝑇) → (𝑥 + 𝑥) = ( I ↾ 𝐵))
556, 8, 13, 35, 37, 48, 49, 54isgrpd 18601 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐺 ∈ Grp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106   I cid 5488  ccnv 5588  cres 5591  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  Grpcgrp 18577  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TGrpctgrp 38756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-undef 8089  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-0g 17152  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tgrp 38757
This theorem is referenced by:  tgrpgrp  38764
  Copyright terms: Public domain W3C validator