| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ishtpyd | Structured version Visualization version GIF version | ||
| Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.) |
| Ref | Expression |
|---|---|
| ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
| ishtpyd.1 | ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) |
| ishtpyd.2 | ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) |
| ishtpyd.3 | ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) |
| Ref | Expression |
|---|---|
| ishtpyd | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ishtpyd.1 | . 2 ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) | |
| 2 | ishtpyd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) | |
| 3 | ishtpyd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) | |
| 4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
| 5 | 4 | ralrimiva 3121 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
| 6 | ishtpy.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
| 7 | ishtpy.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 8 | ishtpy.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
| 9 | 6, 7, 8 | ishtpy 24852 | . 2 ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |
| 10 | 1, 5, 9 | mpbir2and 713 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ‘cfv 6476 (class class class)co 7340 0cc0 10997 1c1 10998 TopOnctopon 22779 Cn ccn 23093 ×t ctx 23429 IIcii 24749 Htpy chtpy 24847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-id 5508 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fv 6484 df-ov 7343 df-oprab 7344 df-mpo 7345 df-1st 7915 df-2nd 7916 df-map 8746 df-top 22763 df-topon 22780 df-cn 23096 df-htpy 24850 |
| This theorem is referenced by: htpycom 24856 htpyid 24857 htpyco1 24858 htpyco2 24859 htpycc 24860 isphtpy2d 24867 |
| Copyright terms: Public domain | W3C validator |