MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpyd Structured version   Visualization version   GIF version

Theorem ishtpyd 24044
Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
ishtpyd.1 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
ishtpyd.2 ((𝜑𝑠𝑋) → (𝑠𝐻0) = (𝐹𝑠))
ishtpyd.3 ((𝜑𝑠𝑋) → (𝑠𝐻1) = (𝐺𝑠))
Assertion
Ref Expression
ishtpyd (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠   𝑋,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem ishtpyd
StepHypRef Expression
1 ishtpyd.1 . 2 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
2 ishtpyd.2 . . . 4 ((𝜑𝑠𝑋) → (𝑠𝐻0) = (𝐹𝑠))
3 ishtpyd.3 . . . 4 ((𝜑𝑠𝑋) → (𝑠𝐻1) = (𝐺𝑠))
42, 3jca 511 . . 3 ((𝜑𝑠𝑋) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
54ralrimiva 3107 . 2 (𝜑 → ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
6 ishtpy.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 ishtpy.3 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
8 ishtpy.4 . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
96, 7, 8ishtpy 24041 . 2 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
101, 5, 9mpbir2and 709 1 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  TopOnctopon 21967   Cn ccn 22283   ×t ctx 22619  IIcii 23944   Htpy chtpy 24036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-map 8575  df-top 21951  df-topon 21968  df-cn 22286  df-htpy 24039
This theorem is referenced by:  htpycom  24045  htpyid  24046  htpyco1  24047  htpyco2  24048  htpycc  24049  isphtpy2d  24056
  Copyright terms: Public domain W3C validator