MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpyd Structured version   Visualization version   GIF version

Theorem ishtpyd 24138
Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
ishtpyd.1 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
ishtpyd.2 ((𝜑𝑠𝑋) → (𝑠𝐻0) = (𝐹𝑠))
ishtpyd.3 ((𝜑𝑠𝑋) → (𝑠𝐻1) = (𝐺𝑠))
Assertion
Ref Expression
ishtpyd (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠   𝑋,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem ishtpyd
StepHypRef Expression
1 ishtpyd.1 . 2 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
2 ishtpyd.2 . . . 4 ((𝜑𝑠𝑋) → (𝑠𝐻0) = (𝐹𝑠))
3 ishtpyd.3 . . . 4 ((𝜑𝑠𝑋) → (𝑠𝐻1) = (𝐺𝑠))
42, 3jca 512 . . 3 ((𝜑𝑠𝑋) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
54ralrimiva 3103 . 2 (𝜑 → ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
6 ishtpy.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 ishtpy.3 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
8 ishtpy.4 . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
96, 7, 8ishtpy 24135 . 2 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
101, 5, 9mpbir2and 710 1 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  TopOnctopon 22059   Cn ccn 22375   ×t ctx 22711  IIcii 24038   Htpy chtpy 24130
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378  df-htpy 24133
This theorem is referenced by:  htpycom  24139  htpyid  24140  htpyco1  24141  htpyco2  24142  htpycc  24143  isphtpy2d  24150
  Copyright terms: Public domain W3C validator