Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishtpyd | Structured version Visualization version GIF version |
Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
ishtpyd.1 | ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) |
ishtpyd.2 | ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) |
ishtpyd.3 | ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) |
Ref | Expression |
---|---|
ishtpyd | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishtpyd.1 | . 2 ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) | |
2 | ishtpyd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) | |
3 | ishtpyd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) | |
4 | 2, 3 | jca 512 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
5 | 4 | ralrimiva 3103 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
6 | ishtpy.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | ishtpy.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
8 | ishtpy.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
9 | 6, 7, 8 | ishtpy 24135 | . 2 ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |
10 | 1, 5, 9 | mpbir2and 710 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ‘cfv 6433 (class class class)co 7275 0cc0 10871 1c1 10872 TopOnctopon 22059 Cn ccn 22375 ×t ctx 22711 IIcii 24038 Htpy chtpy 24130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-map 8617 df-top 22043 df-topon 22060 df-cn 22378 df-htpy 24133 |
This theorem is referenced by: htpycom 24139 htpyid 24140 htpyco1 24141 htpyco2 24142 htpycc 24143 isphtpy2d 24150 |
Copyright terms: Public domain | W3C validator |