MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpyd Structured version   Visualization version   GIF version

Theorem ishtpyd 24874
Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (𝜑𝐽 ∈ (TopOn‘𝑋))
ishtpy.3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
ishtpyd.1 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
ishtpyd.2 ((𝜑𝑠𝑋) → (𝑠𝐻0) = (𝐹𝑠))
ishtpyd.3 ((𝜑𝑠𝑋) → (𝑠𝐻1) = (𝐺𝑠))
Assertion
Ref Expression
ishtpyd (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   𝜑,𝑠   𝑋,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem ishtpyd
StepHypRef Expression
1 ishtpyd.1 . 2 (𝜑𝐻 ∈ ((𝐽 ×t II) Cn 𝐾))
2 ishtpyd.2 . . . 4 ((𝜑𝑠𝑋) → (𝑠𝐻0) = (𝐹𝑠))
3 ishtpyd.3 . . . 4 ((𝜑𝑠𝑋) → (𝑠𝐻1) = (𝐺𝑠))
42, 3jca 511 . . 3 ((𝜑𝑠𝑋) → ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
54ralrimiva 3125 . 2 (𝜑 → ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))
6 ishtpy.1 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
7 ishtpy.3 . . 3 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
8 ishtpy.4 . . 3 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
96, 7, 8ishtpy 24871 . 2 (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠𝑋 ((𝑠𝐻0) = (𝐹𝑠) ∧ (𝑠𝐻1) = (𝐺𝑠)))))
101, 5, 9mpbir2and 713 1 (𝜑𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069  TopOnctopon 22797   Cn ccn 23111   ×t ctx 23447  IIcii 24768   Htpy chtpy 24866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-top 22781  df-topon 22798  df-cn 23114  df-htpy 24869
This theorem is referenced by:  htpycom  24875  htpyid  24876  htpyco1  24877  htpyco2  24878  htpycc  24879  isphtpy2d  24886
  Copyright terms: Public domain W3C validator