MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ishtpyd Structured version   Visualization version   GIF version

Theorem ishtpyd 24722
Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.)
Hypotheses
Ref Expression
ishtpy.1 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
ishtpy.3 (πœ‘ β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
ishtpy.4 (πœ‘ β†’ 𝐺 ∈ (𝐽 Cn 𝐾))
ishtpyd.1 (πœ‘ β†’ 𝐻 ∈ ((𝐽 Γ—t II) Cn 𝐾))
ishtpyd.2 ((πœ‘ ∧ 𝑠 ∈ 𝑋) β†’ (𝑠𝐻0) = (πΉβ€˜π‘ ))
ishtpyd.3 ((πœ‘ ∧ 𝑠 ∈ 𝑋) β†’ (𝑠𝐻1) = (πΊβ€˜π‘ ))
Assertion
Ref Expression
ishtpyd (πœ‘ β†’ 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Distinct variable groups:   𝐹,𝑠   𝐺,𝑠   𝐻,𝑠   𝐽,𝑠   πœ‘,𝑠   𝑋,𝑠
Allowed substitution hint:   𝐾(𝑠)

Proof of Theorem ishtpyd
StepHypRef Expression
1 ishtpyd.1 . 2 (πœ‘ β†’ 𝐻 ∈ ((𝐽 Γ—t II) Cn 𝐾))
2 ishtpyd.2 . . . 4 ((πœ‘ ∧ 𝑠 ∈ 𝑋) β†’ (𝑠𝐻0) = (πΉβ€˜π‘ ))
3 ishtpyd.3 . . . 4 ((πœ‘ ∧ 𝑠 ∈ 𝑋) β†’ (𝑠𝐻1) = (πΊβ€˜π‘ ))
42, 3jca 511 . . 3 ((πœ‘ ∧ 𝑠 ∈ 𝑋) β†’ ((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ )))
54ralrimiva 3145 . 2 (πœ‘ β†’ βˆ€π‘  ∈ 𝑋 ((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ )))
6 ishtpy.1 . . 3 (πœ‘ β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
7 ishtpy.3 . . 3 (πœ‘ β†’ 𝐹 ∈ (𝐽 Cn 𝐾))
8 ishtpy.4 . . 3 (πœ‘ β†’ 𝐺 ∈ (𝐽 Cn 𝐾))
96, 7, 8ishtpy 24719 . 2 (πœ‘ β†’ (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 Γ—t II) Cn 𝐾) ∧ βˆ€π‘  ∈ 𝑋 ((𝑠𝐻0) = (πΉβ€˜π‘ ) ∧ (𝑠𝐻1) = (πΊβ€˜π‘ )))))
101, 5, 9mpbir2and 710 1 (πœ‘ β†’ 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 395   = wceq 1540   ∈ wcel 2105  βˆ€wral 3060  β€˜cfv 6543  (class class class)co 7412  0cc0 11113  1c1 11114  TopOnctopon 22633   Cn ccn 22949   Γ—t ctx 23285  IIcii 24616   Htpy chtpy 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-1st 7978  df-2nd 7979  df-map 8825  df-top 22617  df-topon 22634  df-cn 22952  df-htpy 24717
This theorem is referenced by:  htpycom  24723  htpyid  24724  htpyco1  24725  htpyco2  24726  htpycc  24727  isphtpy2d  24734
  Copyright terms: Public domain W3C validator