Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ishtpyd | Structured version Visualization version GIF version |
Description: Deduction for membership in the class of homotopies. (Contributed by Mario Carneiro, 22-Feb-2015.) |
Ref | Expression |
---|---|
ishtpy.1 | ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
ishtpy.3 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
ishtpy.4 | ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) |
ishtpyd.1 | ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) |
ishtpyd.2 | ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) |
ishtpyd.3 | ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) |
Ref | Expression |
---|---|
ishtpyd | ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ishtpyd.1 | . 2 ⊢ (𝜑 → 𝐻 ∈ ((𝐽 ×t II) Cn 𝐾)) | |
2 | ishtpyd.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻0) = (𝐹‘𝑠)) | |
3 | ishtpyd.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → (𝑠𝐻1) = (𝐺‘𝑠)) | |
4 | 2, 3 | jca 511 | . . 3 ⊢ ((𝜑 ∧ 𝑠 ∈ 𝑋) → ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
5 | 4 | ralrimiva 3107 | . 2 ⊢ (𝜑 → ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))) |
6 | ishtpy.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) | |
7 | ishtpy.3 | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
8 | ishtpy.4 | . . 3 ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) | |
9 | 6, 7, 8 | ishtpy 24041 | . 2 ⊢ (𝜑 → (𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺) ↔ (𝐻 ∈ ((𝐽 ×t II) Cn 𝐾) ∧ ∀𝑠 ∈ 𝑋 ((𝑠𝐻0) = (𝐹‘𝑠) ∧ (𝑠𝐻1) = (𝐺‘𝑠))))) |
10 | 1, 5, 9 | mpbir2and 709 | 1 ⊢ (𝜑 → 𝐻 ∈ (𝐹(𝐽 Htpy 𝐾)𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ‘cfv 6418 (class class class)co 7255 0cc0 10802 1c1 10803 TopOnctopon 21967 Cn ccn 22283 ×t ctx 22619 IIcii 23944 Htpy chtpy 24036 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-map 8575 df-top 21951 df-topon 21968 df-cn 22286 df-htpy 24039 |
This theorem is referenced by: htpycom 24045 htpyid 24046 htpyco1 24047 htpyco2 24048 htpycc 24049 isphtpy2d 24056 |
Copyright terms: Public domain | W3C validator |